Python 中产出关键字的用法是什么? 它能做什么?

例如,我试图理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。


当前回答

在 Python 生成器( 一种特殊的迭代器) 中, 生成一系列的值, 产出关键字与 发电机功能的返回关键字相似 。

另一个令人着迷的是 生成关键词的方法 是保存生成功能的状态。

因此,我们可以设定一个数字 以不同的数值 每一次发电机产生时。

以下是一个例子:

def getPrimes(number):
    while True:
        if isPrime(number):
            number = yield number     # a miracle occurs here
        number += 1

def printSuccessivePrimes(iterations, base=10):
    primeGenerator = getPrimes(base)
    primeGenerator.send(None)
    for power in range(iterations):
        print(primeGenerator.send(base ** power))

其他回答

这是关于产量的心理形象。

我想把一条线视为有堆叠(即使它不是用这种方式执行的)。

当调用一个普通函数时, 它会将其本地变量放入堆栈, 进行一些计算, 然后清除堆栈和返回。 其本地变量的值再也不会被看到 。

当它的代码开始运行时( 即函数被调用后, 返回一个生成对象, 其下一个( ) 方法随后被引用) , 它同样将其本地变量放在堆叠上, 并进行一段时间的计算 。 但是, 当它点击收益语句时, 在清理堆叠中的一部分并返回之前, 它会对其本地变量进行截图, 并将其存储在生成对象中 。 它还写下它目前位于代码中的位置( 即特定收益语句 ) 。

所以这是一种冷冻功能 发电机挂在了上面

当下一个 () 后被调用时, 它会从堆栈上取回函数的物品, 并重新激活它。 函数继续从剩余部分进行计算, 无视它刚刚在冷藏室里度过了一个永恒的时间 。

比较以下实例:

def normalFunction():
    return
    if False:
        pass

def yielderFunction():
    return
    if False:
        yield 12

当我们称第二个函数为第二个函数时, 它的行为与第一个函数非常不同。 收益声明可能无法达到, 但是如果它存在任何地方, 它会改变我们正在处理的东西的性质 。

>>> yielderFunction()
<generator object yielderFunction at 0x07742D28>

调用 powerFunction () 不运行它的代码, 而是让一个生成器出自代码 。 (也许用 powerFunction () 的前缀命名这种东西作为可读性是一个好主意 。)

>>> gen = yielderFunction()
>>> dir(gen)
['__class__',
 ...
 '__iter__',    #Returns gen itself, to make it work uniformly with containers
 ...            #when given to a for loop. (Containers return an iterator instead.)
 'close',
 'gi_code',
 'gi_frame',
 'gi_running',
 'next',        #The method that runs the function's body.
 'send',
 'throw']

gi_ code 和 gi_ frame 字段是存放冻结状态的地方。 使用 dir (.) 来探索它们, 我们可以确认上面的心理模型是可信的 。

这样想吧:

迭代器只是具有下一个( ) 方法的对象的奇特探测术语。 因此, 产生式的函数最终会变成这样 :

原文:

def some_function():
    for i in xrange(4):
        yield i

for i in some_function():
    print i

Python 翻译用上述代码所做的基本上就是:

class it:
    def __init__(self):
        # Start at -1 so that we get 0 when we add 1 below.
        self.count = -1

    # The __iter__ method will be called once by the 'for' loop.
    # The rest of the magic happens on the object returned by this method.
    # In this case it is the object itself.
    def __iter__(self):
        return self

    # The next method will be called repeatedly by the 'for' loop
    # until it raises StopIteration.
    def next(self):
        self.count += 1
        if self.count < 4:
            return self.count
        else:
            # A StopIteration exception is raised
            # to signal that the iterator is done.
            # This is caught implicitly by the 'for' loop.
            raise StopIteration

def some_func():
    return it()

for i in some_func():
    print i

为了更深入地了解幕后发生的事情,

iterator = some_func()
try:
    while 1:
        print iterator.next()
except StopIteration:
    pass

这更有意义还是更让人困惑?

我要指出,为了说明起见,这过于简单化。 )

在描述如何使用发电机的许多伟大答案中, 我感到还没有给出一种答案。 这是编程语言理论的答案:

Python 中的收益率语句返回了一个发电机。 Python 的发电机功能返回了连续性( 具体地说, 是一种共同的常规, 但连续性代表了了解情况的一般机制 ) 。

编程语言理论的继续是更根本的计算方法,但通常不会被使用,因为它们极难解释,也很难执行。但是,关于继续的理念很简单:是计算状态尚未完成。在这种状态下,变量的当前值、尚未执行的操作等等被保存。然后,在程序稍后的某个时候,可以援引继续,使程序的变量被重新设置到状态,保存的操作被执行。

以这种更一般的形式, 延续可以用两种方式执行 。 以调用/ cc 方式, 程序堆放的堆放被实际保存, 然后当继续使用时, 堆放被恢复 。

在继续传承风格(CPS)中,续编只是程序员明确管理和传到子例程的正常功能(仅在功能为头等语言的语文中),程序员明确管理和传到子例程。在这种风格中,程序状态代表关闭(和恰好在其中编码的变量),而不是堆叠中某处的变量。 管理控制流程的功能接受继续作为参数(在CPS的某些变异中,功能可能接受多重延续),并通过仅拨打这些函数来操纵控制流程,然后返回。一个非常简单的延续传承风格实例如下:

def save_file(filename):
  def write_file_continuation():
    write_stuff_to_file(filename)

  check_if_file_exists_and_user_wants_to_overwrite(write_file_continuation)

在此(非常简单化的)示例中,程序员将实际写入文件的操作保存为续存(这有可能是一个非常复杂的操作,有许多细节要写出来),然后将这一续存(即作为头等关闭)传递给另一个操作员,该操作员会做一些更多的处理,然后在必要时调用它。 (在实际的 GUI 编程中,我大量使用这种设计模式,要么是因为它可以节省我的代码线,要么更重要的是,在图形用户界面事件触发后管理控制流程。 )

这个职位的其余部分将不失为一般性,将连续性概念化为CPS, 因为它很容易理解和阅读。

现在让我们来谈谈Python 的发电机。 发电机是一种特定的子延续类型。 虽然继续一般能够保存计算状态( 即程序调用堆) , 但发电机只能保存循环器的循环状态 。 虽然这个定义对于发电机的某些使用案例来说有点误导 。 例如 :

def f():
  while True:
    yield 4

这显然是一个合理的可循环性,其行为是明确的 -- 每次发电机在发电机上转动时,它就会返回 4 (并永远这样做 ) 。但是,在考虑迭代器时,它可能并不是一种典型的可循环的类型(例如,收藏中的x:Do_hine(x) ) 。 这个例子说明了发电机的力量:如果有什么是迭代器,一个发电机可以保存其迭代状态。

需要重申: 继续可以保存程序堆叠的状态, 发电机可以保存循环状态 。 这意味着继续能力比发电机强大得多, 同时发电机也容易得多。 语言设计师更容易实施,程序设计员更容易使用( 如果您有时间燃烧, 试着读懂和理解关于继续和调用/ cc的页面 ) 。

但您可以很容易地实施(和概念化)发电机,作为延续传承风格的一个简单而具体的例子:

当调用产值时, 它会告诉函数返回一个延续。 当再次调用函数时, 它从它所剩的开始。 所以, 在伪假伪代码( 即不是伪代码, 但不是代码) 中, 生成器的下一个方法基本上如下 :

class Generator():
  def __init__(self,iterable,generatorfun):
    self.next_continuation = lambda:generatorfun(iterable)

  def next(self):
    value, next_continuation = self.next_continuation()
    self.next_continuation = next_continuation
    return value

当产出关键字实际上为实际生成功能的合成糖时, 基本上是类似 :

def generatorfun(iterable):
  if len(iterable) == 0:
    raise StopIteration
  else:
    return (iterable[0], lambda:generatorfun(iterable[1:]))

记住这只是假码,而Python发电机的实际安装则更为复杂。 但是,为了了解正在发生的事情,试图使用持续的传记风格来实施生成器,而不使用产出关键字。

收益率和返回一样, 它会返回任何您告诉它的东西( 作为生成器 ) 。 区别在于下次您调用生成器时, 执行从最后一次调用开始到收益语句 。 与返回不同的是, 当收益发生时, 堆叠框架不会被清理, 但是控制会被转回调回调用方, 因此下次调用函数时, 它的状态将会恢复 。

在您的代码中,函数获取_child_camedates 的动作就像一个迭代器,这样当您扩展列表时,它会一次在新列表中添加一个元素 。

列表。extendend calls a plerator until it's fulled it's explator until. 如果是您所贴的代码样本, 只需将图普还给列表, 并附加到列表中, 就会更加清楚 。

佩顿有什么差错?

Python 中的 Yield 关键字类似于用于返回 Python 中的值或对象的返回语句。 但是, 存在微小的差别。 收益语句返回一个生成符, 而不是简单地返回一个值, 而返回一个函数的生成符。

在程序内,当您调用一个函数,该函数有一个输出语句时,一旦遇到一个输出,函数的执行即停止,然后将生成器的一个对象返回到函数调用器。用更简单的文字,产出关键字将把一个与该关键字一起指定的表达式转换为生成器对象,然后返回到调用器。因此,如果您想要获得在生成器对象内存储的值,则需要将该关键字复制到该对象上。

它不会破坏本地变量的状态。 当调用函数时, 执行将从最后一个输出表达式开始。 请注意, 包含输出关键字的函数被称为生成函数 。

当您使用含有返回值的函数时,每次调用函数时,该函数从一组新的变量开始。反之,如果使用一个生成函数而不是正常函数,则执行将从它左最后的位置开始。

如果您想要从函数中返回多个值, 您可以使用输出关键字来使用生成函数。 输出表达式返回多个值。 它们返回一个值, 然后等待, 保存本地状态, 然后再恢复 。

资料来源:https://www.simplilearn.com/tutorics/python-tutoric/yield-in-python。