给定两个包含范围[x1:x2]和[y1:y2],其中x1≤x2和y1≤y2,测试这两个范围是否有重叠的最有效方法是什么?

一个简单的实现如下:

bool testOverlap(int x1, int x2, int y1, int y2) {
  return (x1 >= y1 && x1 <= y2) ||
         (x2 >= y1 && x2 <= y2) ||
         (y1 >= x1 && y1 <= x2) ||
         (y2 >= x1 && y2 <= x2);
}

但是我希望有更有效的方法来计算这个。

就最少的操作而言,哪种方法是最有效的?


当前回答

如果有人正在寻找计算实际重叠的一行程序:

int overlap = ( x2 > y1 || y2 < x1 ) ? 0 : (y2 >= y1 && x2 <= y1 ? y1 : y2) - ( x2 <= x1 && y2 >= x1 ? x1 : x2) + 1; //max 11 operations

如果你想要少一些操作,但多一些变量:

bool b1 = x2 <= y1;
bool b2 = y2 >= x1;
int overlap = ( !b1 || !b2 ) ? 0 : (y2 >= y1 && b1 ? y1 : y2) - ( x2 <= x1 && b2 ? x1 : x2) + 1; // max 9 operations

其他回答

我的情况不同。我要检查两个时间范围是否重叠。不应该有单位时间的重叠。这里是Go的实现。

    func CheckRange(as, ae, bs, be int) bool {
    return (as >= be) != (ae > bs)
    }

测试用例

if CheckRange(2, 8, 2, 4) != true {
        t.Error("Expected 2,8,2,4 to equal TRUE")
    }

    if CheckRange(2, 8, 2, 4) != true {
        t.Error("Expected 2,8,2,4 to equal TRUE")
    }

    if CheckRange(2, 8, 6, 9) != true {
        t.Error("Expected 2,8,6,9 to equal TRUE")
    }

    if CheckRange(2, 8, 8, 9) != false {
        t.Error("Expected 2,8,8,9 to equal FALSE")
    }

    if CheckRange(2, 8, 4, 6) != true {
        t.Error("Expected 2,8,4,6 to equal TRUE")
    }

    if CheckRange(2, 8, 1, 9) != true {
        t.Error("Expected 2,8,1,9 to equal TRUE")
    }

    if CheckRange(4, 8, 1, 3) != false {
        t.Error("Expected 4,8,1,3 to equal FALSE")
    }

    if CheckRange(4, 8, 1, 4) != false {
        t.Error("Expected 4,8,1,4 to equal FALSE")
    }

    if CheckRange(2, 5, 6, 9) != false {
        t.Error("Expected 2,5,6,9 to equal FALSE")
    }

    if CheckRange(2, 5, 5, 9) != false {
        t.Error("Expected 2,5,5,9 to equal FALSE")
    }

你可以在边界比较中看到异或模式

return x2 >= y1 && x1 <= y2;

为什么这样做有效: 范围不重叠的唯一情况是当一个范围的结束在另一个范围的开始之前。所以我们想要!(x2 < y1 || x1 > y2)它等价于上面。

这很容易扭曲正常人的大脑,所以我找到了一个更容易理解的视觉方法:

勒解释

如果两个范围“太胖”,无法放入正好是两者宽度之和的槽中,那么它们就会重叠。

对于范围[a1, a2]和[b1, b2],这将是:

/**
 * we are testing for:
 *     max point - min point < w1 + w2    
 **/
if max(a2, b2) - min(a1, b1) < (a2 - a1) + (b2 - b1) {
  // too fat -- they overlap!
}

反过来思考:如何使这两个范围不重叠?给定[x1, x2],则[y1, y2]应在[x1, x2]之外,即y1 < y2 < x1或x2 < y1 < y2,这等价于y2 < x1或x2 < y1。

因此,使两个范围重叠的条件是:不(y2 < x1或x2 < y1),这相当于y2 >= x1和x2 >= y1(与Simon接受的答案相同)。

我相信min(upper(A),upper(B))>=max(lower(A),lower(B))将是一个很好的解决方案,不仅因为它的简单性,而且因为它超越了两个范围的可扩展性。