如果我们使用循环而不是递归,或者反之,在两者都可以达到相同目的的算法中,性能是否会受到影响?检查给定的字符串是否是回文。 我见过许多程序员使用递归作为一种炫耀的手段,当一个简单的迭代算法可以满足要求。 编译器在决定使用什么时起着至关重要的作用吗?


当前回答

在许多情况下,由于缓存提高了性能,递归更快。例如,这是一个使用传统归并例程的归并排序的迭代版本。它将比递归实现运行得慢,因为缓存改进了性能。

迭代实现

public static void sort(Comparable[] a)
{
    int N = a.length;
    aux = new Comparable[N];
    for (int sz = 1; sz < N; sz = sz+sz)
        for (int lo = 0; lo < N-sz; lo += sz+sz)
            merge(a, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));
}

递归实现

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
    if (hi <= lo) return;
    int mid = lo + (hi - lo) / 2;
    sort(a, aux, lo, mid);
    sort(a, aux, mid+1, hi);
    merge(a, aux, lo, mid, hi);
}

PS -这是Kevin Wayne教授(普林斯顿大学)在Coursera上的算法课程上讲的。

其他回答

比较递归和迭代就像比较十字螺丝刀和一字螺丝刀。在大多数情况下,你可以拆卸任何一个平头的十字螺钉,但如果你使用专为该螺钉设计的螺丝刀,那就更容易了,对吧?

有些算法只是适合递归,因为它们的设计方式(斐波那契数列,遍历树状结构等)。递归使算法更简洁,更容易理解(因此可共享和可重用)。

此外,一些递归算法使用“惰性评估”,这使得它们比迭代算法更有效。这意味着它们只在需要的时候执行昂贵的计算,而不是每次循环运行时都执行。

这应该足够让你开始了。我也会给你找一些文章和例子。

链接1:Haskel vs PHP(递归vs迭代)

下面是一个程序员必须使用PHP处理大型数据集的示例。他展示了在Haskel中使用递归处理是多么容易,但由于PHP没有简单的方法来完成相同的方法,他被迫使用迭代来获得结果。

http://blog.webspecies.co.uk/2011-05-31/lazy-evaluation-with-php.html

链接2:掌握递归

递归的坏名声大多来自于命令式语言的高成本和低效率。本文的作者讨论了如何优化递归算法,使其更快、更有效。他还介绍了如何将传统循环转换为递归函数,以及使用尾部递归的好处。我认为他的结束语总结了我的一些要点:

递归编程为程序员提供了一种更好的组织方式 以一种既可维护又逻辑一致的方式编写代码。” https://developer.ibm.com/articles/l-recurs/

链接3:递归比循环快吗?(回答)

下面是一个与你的问题类似的stackoverflow问题的答案链接。作者指出,许多与递归或循环相关的基准测试都是特定于语言的。命令式语言通常使用循环更快,使用递归更慢,函数式语言反之亦然。我想从这个链接中得到的主要观点是,在语言不可知论/情境盲目的意义上回答这个问题是非常困难的。

递归比循环快吗?

我发现了这些方法之间的另一个不同之处。 它看起来简单而不重要,但当你准备面试时,它有一个非常重要的角色,所以仔细看。

简而言之: 1)迭代后序遍历并不容易——这使得DFT更加复杂 2)循环检查更容易递归

细节:

在递归的情况下,很容易创建前后遍历:

想象一个相当标准的问题:“当任务依赖于其他任务时,打印所有应该执行的任务以执行任务5”

例子:

    //key-task, value-list of tasks the key task depends on
    //"adjacency map":
    Map<Integer, List<Integer>> tasksMap = new HashMap<>();
    tasksMap.put(0, new ArrayList<>());
    tasksMap.put(1, new ArrayList<>());

    List<Integer> t2 = new ArrayList<>();
    t2.add(0);
    t2.add(1);
    tasksMap.put(2, t2);

    List<Integer> t3 = new ArrayList<>();
    t3.add(2);
    t3.add(10);
    tasksMap.put(3, t3);

    List<Integer> t4 = new ArrayList<>();
    t4.add(3);
    tasksMap.put(4, t4);

    List<Integer> t5 = new ArrayList<>();
    t5.add(3);
    tasksMap.put(5, t5);

    tasksMap.put(6, new ArrayList<>());
    tasksMap.put(7, new ArrayList<>());

    List<Integer> t8 = new ArrayList<>();
    t8.add(5);
    tasksMap.put(8, t8);

    List<Integer> t9 = new ArrayList<>();
    t9.add(4);
    tasksMap.put(9, t9);

    tasksMap.put(10, new ArrayList<>());

    //task to analyze:
    int task = 5;


    List<Integer> res11 = getTasksInOrderDftReqPostOrder(tasksMap, task);
    System.out.println(res11);**//note, no reverse required**

    List<Integer> res12 = getTasksInOrderDftReqPreOrder(tasksMap, task);
    Collections.reverse(res12);//note reverse!
    System.out.println(res12);

    private static List<Integer> getTasksInOrderDftReqPreOrder(Map<Integer, List<Integer>> tasksMap, int task) {
         List<Integer> result = new ArrayList<>();
         Set<Integer> visited = new HashSet<>();
         reqPreOrder(tasksMap,task,result, visited);
         return result;
    }

private static void reqPreOrder(Map<Integer, List<Integer>> tasksMap, int task, List<Integer> result, Set<Integer> visited) {

    if(!visited.contains(task)) {
        visited.add(task);
        result.add(task);//pre order!
        List<Integer> children = tasksMap.get(task);
        if (children != null && children.size() > 0) {
            for (Integer child : children) {
                reqPreOrder(tasksMap,child,result, visited);
            }
        }
    }
}

private static List<Integer> getTasksInOrderDftReqPostOrder(Map<Integer, List<Integer>> tasksMap, int task) {
    List<Integer> result = new ArrayList<>();
    Set<Integer> visited = new HashSet<>();
    reqPostOrder(tasksMap,task,result, visited);
    return result;
}

private static void reqPostOrder(Map<Integer, List<Integer>> tasksMap, int task, List<Integer> result, Set<Integer> visited) {
    if(!visited.contains(task)) {
        visited.add(task);
        List<Integer> children = tasksMap.get(task);
        if (children != null && children.size() > 0) {
            for (Integer child : children) {
                reqPostOrder(tasksMap,child,result, visited);
            }
        }
        result.add(task);//post order!
    }
}

注意,递归后序遍历不需要对结果进行后续反转。孩子先打印,你的任务最后打印。一切都很好。您可以执行递归的预顺序遍历(上面也显示了),这将需要反转结果列表。

迭代方法并不那么简单!在迭代(一个堆栈)方法中,你只能做一个预排序遍历,所以你必须在最后反转结果数组:

    List<Integer> res1 = getTasksInOrderDftStack(tasksMap, task);
    Collections.reverse(res1);//note reverse!
    System.out.println(res1);

    private static List<Integer> getTasksInOrderDftStack(Map<Integer, List<Integer>> tasksMap, int task) {
    List<Integer> result = new ArrayList<>();
    Set<Integer> visited = new HashSet<>();
    Stack<Integer> st = new Stack<>();


    st.add(task);
    visited.add(task);

    while(!st.isEmpty()){
        Integer node = st.pop();
        List<Integer> children = tasksMap.get(node);
        result.add(node);
        if(children!=null && children.size() > 0){
            for(Integer child:children){
                if(!visited.contains(child)){
                    st.add(child);
                    visited.add(child);
                }
            }
        }
        //If you put it here - it does not matter - it is anyway a pre-order
        //result.add(node);
    }
    return result;
}

看起来很简单,不是吗?

但在一些面试中,这是一个陷阱。

It means the following: with the recursive approach, you can implement Depth First Traversal and then select what order you need pre or post(simply by changing the location of the "print", in our case of the "adding to the result list"). With the iterative (one stack) approach you can easily do only pre-order traversal and so in the situation when children need be printed first(pretty much all situations when you need start print from the bottom nodes, going upwards) - you are in the trouble. If you have that trouble you can reverse later, but it will be an addition to your algorithm. And if an interviewer is looking at his watch it may be a problem for you. There are complex ways to do an iterative post-order traversal, they exist, but they are not simple. Example:https://www.geeksforgeeks.org/iterative-postorder-traversal-using-stack/

因此,底线是:我会在面试中使用递归,这样更容易管理和解释。在任何紧急情况下,您都可以轻松地从前顺序遍历到后顺序遍历。在迭代中,你就没有那么灵活了。

我会使用递归,然后说:“好吧,但是迭代可以让我更直接地控制使用的内存,我可以很容易地测量堆栈大小,并禁止一些危险的溢出。”

递归的另一个优点——避免/注意图中的循环更简单。

例子(preudocode):

dft(n){
    mark(n)
    for(child: n.children){
        if(marked(child)) 
            explode - cycle found!!!
        dft(child)
    }
    unmark(n)
}

这取决于“递归深度”。 这取决于函数调用开销对总执行时间的影响程度。

例如,用递归的方式计算经典阶乘是非常低效的,因为: —数据溢出风险 -栈溢出风险 —函数调用开销占执行时间的80%

同时开发一种最小-最大算法用于国际象棋游戏中的位置分析,该算法将分析后续的N步棋,可以在“分析深度”上以递归方式实现(正如我正在做的^_^)

如果我们使用循环而不是 递归或者反之,在算法中两者都可以达到相同的目的?”

Usually yes if you are writing in a imperative language iteration will run faster than recursion, the performance hit is minimized in problems where the iterative solution requires manipulating Stacks and popping items off of a stack due to the recursive nature of the problem. There are a lot of times where the recursive implementation is much easier to read because the code is much shorter, so you do want to consider maintainability. Especailly in cases where the problem has a recursive nature. So take for example:

河内塔的递归实现:

def TowerOfHanoi(n , source, destination, auxiliary):
    if n==1:
        print ("Move disk 1 from source",source,"to destination",destination)
        return
    TowerOfHanoi(n-1, source, auxiliary, destination)
    print ("Move disk",n,"from source",source,"to destination",destination)
    TowerOfHanoi(n-1, auxiliary, destination, source)

相当短,很容易读。将其与对应的迭代TowerOfHanoi进行比较:

# Python3 program for iterative Tower of Hanoi
import sys
 
# A structure to represent a stack
class Stack:
    # Constructor to set the data of
    # the newly created tree node
    def __init__(self, capacity):
        self.capacity = capacity
        self.top = -1
        self.array = [0]*capacity
 
# function to create a stack of given capacity.
def createStack(capacity):
    stack = Stack(capacity)
    return stack
  
# Stack is full when top is equal to the last index
def isFull(stack):
    return (stack.top == (stack.capacity - 1))
   
# Stack is empty when top is equal to -1
def isEmpty(stack):
    return (stack.top == -1)
   
# Function to add an item to stack.
# It increases top by 1
def push(stack, item):
    if(isFull(stack)):
        return
    stack.top+=1
    stack.array[stack.top] = item
   
# Function to remove an item from stack.
# It decreases top by 1
def Pop(stack):
    if(isEmpty(stack)):
        return -sys.maxsize
    Top = stack.top
    stack.top-=1
    return stack.array[Top]
   
# Function to implement legal
# movement between two poles
def moveDisksBetweenTwoPoles(src, dest, s, d):
    pole1TopDisk = Pop(src)
    pole2TopDisk = Pop(dest)
 
    # When pole 1 is empty
    if (pole1TopDisk == -sys.maxsize):
        push(src, pole2TopDisk)
        moveDisk(d, s, pole2TopDisk)
       
    # When pole2 pole is empty
    else if (pole2TopDisk == -sys.maxsize):
        push(dest, pole1TopDisk)
        moveDisk(s, d, pole1TopDisk)
       
    # When top disk of pole1 > top disk of pole2
    else if (pole1TopDisk > pole2TopDisk):
        push(src, pole1TopDisk)
        push(src, pole2TopDisk)
        moveDisk(d, s, pole2TopDisk)
       
    # When top disk of pole1 < top disk of pole2
    else:
        push(dest, pole2TopDisk)
        push(dest, pole1TopDisk)
        moveDisk(s, d, pole1TopDisk)
   
# Function to show the movement of disks
def moveDisk(fromPeg, toPeg, disk):
    print("Move the disk", disk, "from '", fromPeg, "' to '", toPeg, "'")
   
# Function to implement TOH puzzle
def tohIterative(num_of_disks, src, aux, dest):
    s, d, a = 'S', 'D', 'A'
   
    # If number of disks is even, then interchange
    # destination pole and auxiliary pole
    if (num_of_disks % 2 == 0):
        temp = d
        d = a
        a = temp
    total_num_of_moves = int(pow(2, num_of_disks) - 1)
   
    # Larger disks will be pushed first
    for i in range(num_of_disks, 0, -1):
        push(src, i)
   
    for i in range(1, total_num_of_moves + 1):
        if (i % 3 == 1):
            moveDisksBetweenTwoPoles(src, dest, s, d)
   
        else if (i % 3 == 2):
            moveDisksBetweenTwoPoles(src, aux, s, a)
   
        else if (i % 3 == 0):
            moveDisksBetweenTwoPoles(aux, dest, a, d)
 
# Input: number of disks
num_of_disks = 3
 
# Create three stacks of size 'num_of_disks'
# to hold the disks
src = createStack(num_of_disks)
dest = createStack(num_of_disks)
aux = createStack(num_of_disks)
 
tohIterative(num_of_disks, src, aux, dest)

Now the first one is way easier to read because suprise suprise shorter code is usually easier to understand than code that is 10 times longer. Sometimes you want to ask yourself is the extra performance gain really worth it? The amount of hours wasted debugging the code. Is the iterative TowerOfHanoi faster than the Recursive TowerOfHanoi? Probably, but not by a big margin. Would I like to program Recursive problems like TowerOfHanoi using iteration? Hell no. Next we have another recursive function the Ackermann function: Using recursion:

    if m == 0:
        # BASE CASE
        return n + 1
    elif m > 0 and n == 0:
        # RECURSIVE CASE
        return ackermann(m - 1, 1)
    elif m > 0 and n > 0:
        # RECURSIVE CASE
        return ackermann(m - 1, ackermann(m, n - 1))

使用迭代:

callStack = [{'m': 2, 'n': 3, 'indentation': 0, 'instrPtr': 'start'}]
returnValue = None

while len(callStack) != 0:
    m = callStack[-1]['m']
    n = callStack[-1]['n']
    indentation = callStack[-1]['indentation']
    instrPtr = callStack[-1]['instrPtr']

    if instrPtr == 'start':
        print('%sackermann(%s, %s)' % (' ' * indentation, m, n))

        if m == 0:
            # BASE CASE
            returnValue = n + 1
            callStack.pop()
            continue
        elif m > 0 and n == 0:
            # RECURSIVE CASE
            callStack[-1]['instrPtr'] = 'after first recursive case'
            callStack.append({'m': m - 1, 'n': 1, 'indentation': indentation + 1, 'instrPtr': 'start'})
            continue
        elif m > 0 and n > 0:
            # RECURSIVE CASE
            callStack[-1]['instrPtr'] = 'after second recursive case, inner call'
            callStack.append({'m': m, 'n': n - 1, 'indentation': indentation + 1, 'instrPtr': 'start'})
            continue
    elif instrPtr == 'after first recursive case':
        returnValue = returnValue
        callStack.pop()
        continue
    elif instrPtr == 'after second recursive case, inner call':
        callStack[-1]['innerCallResult'] = returnValue
        callStack[-1]['instrPtr'] = 'after second recursive case, outer call'
        callStack.append({'m': m - 1, 'n': returnValue, 'indentation': indentation + 1, 'instrPtr': 'start'})
        continue
    elif instrPtr == 'after second recursive case, outer call':
        returnValue = returnValue
        callStack.pop()
        continue
print(returnValue)

再说一次,递归实现更容易理解。所以我的结论是,如果问题本质上是递归的,需要操作堆栈中的项,就使用递归。

在很多情况下,它提供了比迭代方法更优雅的解决方案,常见的例子是遍历二叉树,所以它不一定更难维护。一般来说,迭代版本通常更快一些(在优化过程中可能会取代递归版本),但递归版本更容易理解和正确实现。