如果我们使用循环而不是递归,或者反之,在两者都可以达到相同目的的算法中,性能是否会受到影响?检查给定的字符串是否是回文。 我见过许多程序员使用递归作为一种炫耀的手段,当一个简单的迭代算法可以满足要求。 编译器在决定使用什么时起着至关重要的作用吗?


当前回答

据我所知,Perl没有优化尾递归调用,但是您可以伪造它。

sub f{
  my($l,$r) = @_;

  if( $l >= $r ){
    return $l;
  } else {

    # return f( $l+1, $r );

    @_ = ( $l+1, $r );
    goto &f;

  }
}

第一次调用时,它将在堆栈上分配空间。然后它将改变它的参数,并重新启动子例程,而不向堆栈添加任何东西。因此,它会假装从未调用过自己,将其转变为一个迭代过程。

注意,没有“my @_;”或“local @_;”,如果你这样做,它将不再工作。

其他回答

递归有一个缺点,使用递归编写的算法的空间复杂度为O(n)。 而迭代方法的空间复杂度为O(1)。这是使用迭代而不是递归的优点。 那我们为什么要用递归呢?

见下文。

有时使用递归编写算法更容易,而使用迭代编写相同的算法略难。在这种情况下,如果您选择遵循迭代方法,您将不得不自己处理堆栈。

递归的内存开销更大,因为每次递归调用通常都需要将一个内存地址推入堆栈,以便稍后程序可以返回到那个地址。

尽管如此,在许多情况下,递归比循环更自然、更可读——比如在处理树的时候。在这些情况下,我建议坚持使用递归。

如果你只是在一个列表上迭代,那么当然,迭代出去。

其他几个答案提到了(深度优先)树遍历。这真的是一个很好的例子,因为这是对一个非常普通的数据结构所做的非常普通的事情。对于这个问题,递归是非常直观的。

点击这里查看“查找”方法: http://penguin.ewu.edu/cscd300/Topic/BSTintro/index.html

堆栈溢出只会发生在编程语言没有内置内存管理....否则,请确保在函数(或函数调用、STDLbs等)中有一些内容。如果没有递归,就不可能有这样的东西……谷歌或SQL,或任何地方一个人必须有效地排序大型数据结构(类)或数据库。

如果你想要遍历文件,递归是一种方法,我敢肯定这就是find * | ?grep *的工作方式。有点像双重递归,特别是管道(但不要像很多人那样做一堆系统调用,如果你要把它放在那里供别人使用的话)。

高级语言,甚至clang/cpp也可以在后台实现相同的功能。

我将通过“归纳”设计一个Haskell数据结构来回答你的问题,这是递归的一种“对偶”。然后我会展示这种对偶性是如何带来好的结果的。

我们为简单树引入一个类型:

data Tree a = Branch (Tree a) (Tree a)
            | Leaf a
            deriving (Eq)

我们可以把这个定义理解为“一棵树是一个分支(包含两棵树)或一个叶子(包含一个数据值)”。叶结点是一种最小的情况。如果树不是叶子,那么它一定是包含两棵树的复合树。这些是唯一的例子。

让我们做一个树:

example :: Tree Int
example = Branch (Leaf 1) 
                 (Branch (Leaf 2) 
                         (Leaf 3))

现在,让我们假设我们想给树中的每个值加1。我们可以通过调用:

addOne :: Tree Int -> Tree Int
addOne (Branch a b) = Branch (addOne a) (addOne b)
addOne (Leaf a)     = Leaf (a + 1)

首先,请注意这实际上是一个递归定义。它将数据构造函数Branch和Leaf作为case(因为Leaf是最小值的,这是唯一可能的case),我们可以确定函数将终止。

用迭代风格编写addOne需要什么?循环进入任意数量的分支会是什么样子?

此外,这种递归通常可以用“函子”来分解。我们可以通过定义将树变成函子:

instance Functor Tree where fmap f (Leaf a)     = Leaf (f a)
                            fmap f (Branch a b) = Branch (fmap f a) (fmap f b)

和定义:

addOne' = fmap (+1)

我们可以提出其他递归方案,例如代数数据类型的变形(或折叠)。使用变形法,我们可以这样写:

addOne'' = cata go where
           go (Leaf a) = Leaf (a + 1)
           go (Branch a b) = Branch a b