用C语言求一个整数的幂的最有效方法是什么?

// 2^3
pow(2,3) == 8

// 5^5
pow(5,5) == 3125

当前回答

更一般的解决方案考虑负指数

private static int pow(int base, int exponent) {

    int result = 1;
    if (exponent == 0)
        return result; // base case;

    if (exponent < 0)
        return 1 / pow(base, -exponent);
    int temp = pow(base, exponent / 2);
    if (exponent % 2 == 0)
        return temp * temp;
    else
        return (base * temp * temp);
}

其他回答

下面是Java中的方法

private int ipow(int base, int exp)
{
    int result = 1;
    while (exp != 0)
    {
        if ((exp & 1) == 1)
            result *= base;
        exp >>= 1;
        base *= base;
    }

    return result;
}

如果您在编译时知道指数(并且它是一个整数),您可以使用模板展开循环。这可以更有效,但我想在这里演示基本原则:

#include <iostream>

template<unsigned long N>
unsigned long inline exp_unroll(unsigned base) {
    return base * exp_unroll<N-1>(base);
}

我们使用模板特化来终止递归:

template<>
unsigned long inline exp_unroll<1>(unsigned base) {
    return base;
}

指数需要在运行时已知,

int main(int argc, char * argv[]) {
    std::cout << argv[1] <<"**5= " << exp_unroll<5>(atoi(argv[1])) << ;std::endl;
}
int pow( int base, int exponent)

{   // Does not work for negative exponents. (But that would be leaving the range of int) 
    if (exponent == 0) return 1;  // base case;
    int temp = pow(base, exponent/2);
    if (exponent % 2 == 0)
        return temp * temp; 
    else
        return (base * temp * temp);
}

O(log N)的解决方案在Swift…

// Time complexity is O(log N)
func power(_ base: Int, _ exp: Int) -> Int { 

    // 1. If the exponent is 1 then return the number (e.g a^1 == a)
    //Time complexity O(1)
    if exp == 1 { 
        return base
    }

    // 2. Calculate the value of the number raised to half of the exponent. This will be used to calculate the final answer by squaring the result (e.g a^2n == (a^n)^2 == a^n * a^n). The idea is that we can do half the amount of work by obtaining a^n and multiplying the result by itself to get a^2n
    //Time complexity O(log N)
    let tempVal = power(base, exp/2) 

    // 3. If the exponent was odd then decompose the result in such a way that it allows you to divide the exponent in two (e.g. a^(2n+1) == a^1 * a^2n == a^1 * a^n * a^n). If the eponent is even then the result must be the base raised to half the exponent squared (e.g. a^2n == a^n * a^n = (a^n)^2).
    //Time complexity O(1)
    return (exp % 2 == 1 ? base : 1) * tempVal * tempVal 

}

迟到的人:

下面是一个尽可能处理y < 0的解。

It uses a result of intmax_t for maximum range. There is no provision for answers that do not fit in intmax_t. powjii(0, 0) --> 1 which is a common result for this case. pow(0,negative), another undefined result, returns INTMAX_MAX intmax_t powjii(int x, int y) { if (y < 0) { switch (x) { case 0: return INTMAX_MAX; case 1: return 1; case -1: return y % 2 ? -1 : 1; } return 0; } intmax_t z = 1; intmax_t base = x; for (;;) { if (y % 2) { z *= base; } y /= 2; if (y == 0) { break; } base *= base; } return z; }

这段代码使用了一个永久循环for(;;),以避免在其他循环解决方案中常见的最终基数*=基数。这个乘法是1)不需要的,2)可能是int*int溢出,也就是UB。