用C语言求一个整数的幂的最有效方法是什么?

// 2^3
pow(2,3) == 8

// 5^5
pow(5,5) == 3125

当前回答

更一般的解决方案考虑负指数

private static int pow(int base, int exponent) {

    int result = 1;
    if (exponent == 0)
        return result; // base case;

    if (exponent < 0)
        return 1 / pow(base, -exponent);
    int temp = pow(base, exponent / 2);
    if (exponent % 2 == 0)
        return temp * temp;
    else
        return (base * temp * temp);
}

其他回答

另一个实现(在Java中)。可能不是最有效的解决方案,但迭代次数与指数解相同。

public static long pow(long base, long exp){        
    if(exp ==0){
        return 1;
    }
    if(exp ==1){
        return base;
    }

    if(exp % 2 == 0){
        long half = pow(base, exp/2);
        return half * half;
    }else{
        long half = pow(base, (exp -1)/2);
        return base * half * half;
    }       
}

如果要取2的a次方。最快的方法是按幂位移位。

2 ** 3 == 1 << 3 == 8
2 ** 30 == 1 << 30 == 1073741824 (A Gigabyte)
int pow(int const x, unsigned const e) noexcept
{
  return !e ? 1 : 1 == e ? x : (e % 2 ? x : 1) * pow(x * x, e / 2);
  //return !e ? 1 : 1 == e ? x : (((x ^ 1) & -(e % 2)) ^ 1) * pow(x * x, e / 2);
}

是的,它是递归的,但是一个好的优化编译器会优化递归。

power()函数只适用于整数

int power(int base, unsigned int exp){

    if (exp == 0)
        return 1;
    int temp = power(base, exp/2);
    if (exp%2 == 0)
        return temp*temp;
    else
        return base*temp*temp;

}

复杂度= O(exp)

Power()函数为负exp和浮点基数工作。

float power(float base, int exp) {

    if( exp == 0)
       return 1;
    float temp = power(base, exp/2);       
    if (exp%2 == 0)
        return temp*temp;
    else {
        if(exp > 0)
            return base*temp*temp;
        else
            return (temp*temp)/base; //negative exponent computation 
    }

} 

复杂度= O(exp)

平方求幂。

int ipow(int base, int exp)
{
    int result = 1;
    for (;;)
    {
        if (exp & 1)
            result *= base;
        exp >>= 1;
        if (!exp)
            break;
        base *= base;
    }

    return result;
}

这是在非对称密码学中对大数进行模求幂的标准方法。