用C语言求一个整数的幂的最有效方法是什么?
// 2^3
pow(2,3) == 8
// 5^5
pow(5,5) == 3125
用C语言求一个整数的幂的最有效方法是什么?
// 2^3
pow(2,3) == 8
// 5^5
pow(5,5) == 3125
当前回答
除了Elias的答案,当使用有符号整数实现时,会导致未定义行为,当使用无符号整数实现时,会导致高输入的不正确值,
下面是平方求幂的修改版本,它也适用于有符号整数类型,并且不会给出错误的值:
#include <stdint.h>
#define SQRT_INT64_MAX (INT64_C(0xB504F333))
int64_t alx_pow_s64 (int64_t base, uint8_t exp)
{
int_fast64_t base_;
int_fast64_t result;
base_ = base;
if (base_ == 1)
return 1;
if (!exp)
return 1;
if (!base_)
return 0;
result = 1;
if (exp & 1)
result *= base_;
exp >>= 1;
while (exp) {
if (base_ > SQRT_INT64_MAX)
return 0;
base_ *= base_;
if (exp & 1)
result *= base_;
exp >>= 1;
}
return result;
}
使用该函数的注意事项:
(1 ** N) == 1
(N ** 0) == 1
(0 ** 0) == 1
(0 ** N) == 0
如果将发生任何溢出或换行,则返回0;
I used int64_t, but any width (signed or unsigned) can be used with little modification. However, if you need to use a non-fixed-width integer type, you will need to change SQRT_INT64_MAX by (int)sqrt(INT_MAX) (in the case of using int) or something similar, which should be optimized, but it is uglier, and not a C constant expression. Also casting the result of sqrt() to an int is not very good because of floating point precission in case of a perfect square, but as I don't know of any implementation where INT_MAX -or the maximum of any type- is a perfect square, you can live with that.
其他回答
O(log N)的解决方案在Swift…
// Time complexity is O(log N)
func power(_ base: Int, _ exp: Int) -> Int {
// 1. If the exponent is 1 then return the number (e.g a^1 == a)
//Time complexity O(1)
if exp == 1 {
return base
}
// 2. Calculate the value of the number raised to half of the exponent. This will be used to calculate the final answer by squaring the result (e.g a^2n == (a^n)^2 == a^n * a^n). The idea is that we can do half the amount of work by obtaining a^n and multiplying the result by itself to get a^2n
//Time complexity O(log N)
let tempVal = power(base, exp/2)
// 3. If the exponent was odd then decompose the result in such a way that it allows you to divide the exponent in two (e.g. a^(2n+1) == a^1 * a^2n == a^1 * a^n * a^n). If the eponent is even then the result must be the base raised to half the exponent squared (e.g. a^2n == a^n * a^n = (a^n)^2).
//Time complexity O(1)
return (exp % 2 == 1 ? base : 1) * tempVal * tempVal
}
int pow( int base, int exponent)
{ // Does not work for negative exponents. (But that would be leaving the range of int)
if (exponent == 0) return 1; // base case;
int temp = pow(base, exponent/2);
if (exponent % 2 == 0)
return temp * temp;
else
return (base * temp * temp);
}
power()函数只适用于整数
int power(int base, unsigned int exp){
if (exp == 0)
return 1;
int temp = power(base, exp/2);
if (exp%2 == 0)
return temp*temp;
else
return base*temp*temp;
}
复杂度= O(exp)
Power()函数为负exp和浮点基数工作。
float power(float base, int exp) {
if( exp == 0)
return 1;
float temp = power(base, exp/2);
if (exp%2 == 0)
return temp*temp;
else {
if(exp > 0)
return base*temp*temp;
else
return (temp*temp)/base; //negative exponent computation
}
}
复杂度= O(exp)
int pow(int const x, unsigned const e) noexcept
{
return !e ? 1 : 1 == e ? x : (e % 2 ? x : 1) * pow(x * x, e / 2);
//return !e ? 1 : 1 == e ? x : (((x ^ 1) & -(e % 2)) ^ 1) * pow(x * x, e / 2);
}
是的,它是递归的,但是一个好的优化编译器会优化递归。
如果你想得到一个整数的2的幂,最好使用shift选项:
Pow(2,5)可以替换为1<<5
这样效率更高。