用C语言求一个整数的幂的最有效方法是什么?
// 2^3
pow(2,3) == 8
// 5^5
pow(5,5) == 3125
用C语言求一个整数的幂的最有效方法是什么?
// 2^3
pow(2,3) == 8
// 5^5
pow(5,5) == 3125
当前回答
除了Elias的答案,当使用有符号整数实现时,会导致未定义行为,当使用无符号整数实现时,会导致高输入的不正确值,
下面是平方求幂的修改版本,它也适用于有符号整数类型,并且不会给出错误的值:
#include <stdint.h>
#define SQRT_INT64_MAX (INT64_C(0xB504F333))
int64_t alx_pow_s64 (int64_t base, uint8_t exp)
{
int_fast64_t base_;
int_fast64_t result;
base_ = base;
if (base_ == 1)
return 1;
if (!exp)
return 1;
if (!base_)
return 0;
result = 1;
if (exp & 1)
result *= base_;
exp >>= 1;
while (exp) {
if (base_ > SQRT_INT64_MAX)
return 0;
base_ *= base_;
if (exp & 1)
result *= base_;
exp >>= 1;
}
return result;
}
使用该函数的注意事项:
(1 ** N) == 1
(N ** 0) == 1
(0 ** 0) == 1
(0 ** N) == 0
如果将发生任何溢出或换行,则返回0;
I used int64_t, but any width (signed or unsigned) can be used with little modification. However, if you need to use a non-fixed-width integer type, you will need to change SQRT_INT64_MAX by (int)sqrt(INT_MAX) (in the case of using int) or something similar, which should be optimized, but it is uglier, and not a C constant expression. Also casting the result of sqrt() to an int is not very good because of floating point precission in case of a perfect square, but as I don't know of any implementation where INT_MAX -or the maximum of any type- is a perfect square, you can live with that.
其他回答
如果要取2的a次方。最快的方法是按幂位移位。
2 ** 3 == 1 << 3 == 8
2 ** 30 == 1 << 30 == 1073741824 (A Gigabyte)
迟到的人:
下面是一个尽可能处理y < 0的解。
It uses a result of intmax_t for maximum range. There is no provision for answers that do not fit in intmax_t. powjii(0, 0) --> 1 which is a common result for this case. pow(0,negative), another undefined result, returns INTMAX_MAX intmax_t powjii(int x, int y) { if (y < 0) { switch (x) { case 0: return INTMAX_MAX; case 1: return 1; case -1: return y % 2 ? -1 : 1; } return 0; } intmax_t z = 1; intmax_t base = x; for (;;) { if (y % 2) { z *= base; } y /= 2; if (y == 0) { break; } base *= base; } return z; }
这段代码使用了一个永久循环for(;;),以避免在其他循环解决方案中常见的最终基数*=基数。这个乘法是1)不需要的,2)可能是int*int溢出,也就是UB。
O(log N)的解决方案在Swift…
// Time complexity is O(log N)
func power(_ base: Int, _ exp: Int) -> Int {
// 1. If the exponent is 1 then return the number (e.g a^1 == a)
//Time complexity O(1)
if exp == 1 {
return base
}
// 2. Calculate the value of the number raised to half of the exponent. This will be used to calculate the final answer by squaring the result (e.g a^2n == (a^n)^2 == a^n * a^n). The idea is that we can do half the amount of work by obtaining a^n and multiplying the result by itself to get a^2n
//Time complexity O(log N)
let tempVal = power(base, exp/2)
// 3. If the exponent was odd then decompose the result in such a way that it allows you to divide the exponent in two (e.g. a^(2n+1) == a^1 * a^2n == a^1 * a^n * a^n). If the eponent is even then the result must be the base raised to half the exponent squared (e.g. a^2n == a^n * a^n = (a^n)^2).
//Time complexity O(1)
return (exp % 2 == 1 ? base : 1) * tempVal * tempVal
}
下面是一个计算x ** y的O(1)算法,灵感来自这条评论。它适用于32位有符号int。
对于较小的y值,它使用平方求幂。对于较大的y值,只有少数x值的结果不会溢出。这个实现使用一个查找表来读取结果而不进行计算。
对于溢出,C标准允许任何行为,包括崩溃。但是,我决定对LUT索引进行边界检查,以防止内存访问违反,这可能是令人惊讶和不受欢迎的。
伪代码:
If `x` is between -2 and 2, use special-case formulas.
Otherwise, if `y` is between 0 and 8, use special-case formulas.
Otherwise:
Set x = abs(x); remember if x was negative
If x <= 10 and y <= 19:
Load precomputed result from a lookup table
Otherwise:
Set result to 0 (overflow)
If x was negative and y is odd, negate the result
C代码:
#define POW9(x) x * x * x * x * x * x * x * x * x
#define POW10(x) POW9(x) * x
#define POW11(x) POW10(x) * x
#define POW12(x) POW11(x) * x
#define POW13(x) POW12(x) * x
#define POW14(x) POW13(x) * x
#define POW15(x) POW14(x) * x
#define POW16(x) POW15(x) * x
#define POW17(x) POW16(x) * x
#define POW18(x) POW17(x) * x
#define POW19(x) POW18(x) * x
int mypow(int x, unsigned y)
{
static int table[8][11] = {
{POW9(3), POW10(3), POW11(3), POW12(3), POW13(3), POW14(3), POW15(3), POW16(3), POW17(3), POW18(3), POW19(3)},
{POW9(4), POW10(4), POW11(4), POW12(4), POW13(4), POW14(4), POW15(4), 0, 0, 0, 0},
{POW9(5), POW10(5), POW11(5), POW12(5), POW13(5), 0, 0, 0, 0, 0, 0},
{POW9(6), POW10(6), POW11(6), 0, 0, 0, 0, 0, 0, 0, 0},
{POW9(7), POW10(7), POW11(7), 0, 0, 0, 0, 0, 0, 0, 0},
{POW9(8), POW10(8), 0, 0, 0, 0, 0, 0, 0, 0, 0},
{POW9(9), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{POW9(10), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
};
int is_neg;
int r;
switch (x)
{
case 0:
return y == 0 ? 1 : 0;
case 1:
return 1;
case -1:
return y % 2 == 0 ? 1 : -1;
case 2:
return 1 << y;
case -2:
return (y % 2 == 0 ? 1 : -1) << y;
default:
switch (y)
{
case 0:
return 1;
case 1:
return x;
case 2:
return x * x;
case 3:
return x * x * x;
case 4:
r = x * x;
return r * r;
case 5:
r = x * x;
return r * r * x;
case 6:
r = x * x;
return r * r * r;
case 7:
r = x * x;
return r * r * r * x;
case 8:
r = x * x;
r = r * r;
return r * r;
default:
is_neg = x < 0;
if (is_neg)
x = -x;
if (x <= 10 && y <= 19)
r = table[x - 3][y - 9];
else
r = 0;
if (is_neg && y % 2 == 1)
r = -r;
return r;
}
}
}
我注意到gnu-GMP的标准指数平方算法有些奇怪:
我实现了两个几乎相同的函数——一个是幂模函数,使用最普通的二进制指数平方算法,
标签______2 ()
然后另一个基本相同的概念,但重新映射为每轮除以10,而不是除以2,
标签______10 ()
.
( time ( jot - 1456 9999999999 6671 | pvE0 |
gawk -Mbe '
function ______10(_, __, ___, ____, _____, _______) {
__ = +__
____ = (____+=_____=____^= \
(_ %=___=+___)<_)+____++^____—
while (__) {
if (_______= __%____) {
if (__==_______) {
return (_^__ *_____) %___
}
__-=_______
_____ = (_^_______*_____) %___
}
__/=____
_ = _^____%___
}
}
function ______2(_, __, ___, ____, _____) {
__=+__
____+=____=_____^=(_%=___=+___)<_
while (__) {
if (__ %____) {
if (__<____) {
return (_*_____) %___
}
_____ = (_____*_) %___
--__
}
__/=____
_= (_*_) %___
}
}
BEGIN {
OFMT = CONVFMT = "%.250g"
__ = (___=_^= FS=OFS= "=")(_<_)
_____ = __^(_=3)^--_ * ++_-(_+_)^_
______ = _^(_+_)-_ + _^!_
_______ = int(______*_____)
________ = 10 ^ 5 + 1
_________ = 8 ^ 4 * 2 - 1
}
GNU Awk 5.1.1, API: 3.1 (GNU MPFR 4.1.0, GNU MP 6.2.1)
.
($ + + NF = ______10(_ = ___美元,NR %________ +_________,_______*(_- 11))) ^ !___“
out9: 48.4MiB 0:00:08 [6.02MiB/s] [6.02MiB/s] [ <=> ]
in0: 15.6MiB 0:00:08 [1.95MiB/s] [1.95MiB/s] [ <=> ]
( jot - 1456 9999999999 6671 | pvE 0.1 in0 | gawk -Mbe ; )
8.31s user 0.06s system 103% cpu 8.058 total
ffa16aa937b7beca66a173ccbf8e1e12 stdin
($ + + NF = ______ 2(_ = ___美元,NR %________ +_________,_______*(_- 11))) ^ !___“
out9: 48.4MiB 0:00:12 [3.78MiB/s] [3.78MiB/s] [<=> ]
in0: 15.6MiB 0:00:12 [1.22MiB/s] [1.22MiB/s] [ <=> ]
( jot - 1456 9999999999 6671 | pvE 0.1 in0 | gawk -Mbe ; )
13.05s user 0.07s system 102% cpu 12.821 total
ffa16aa937b7beca66a173ccbf8e1e12 stdin
由于一些非常违反直觉和我不知道的原因,对于我投入的各种各样的输入,div-10变体几乎总是更快。这是两个哈希值之间的匹配,这让它真正令人困惑,尽管计算机显然没有内置在10进制的范例中。
我是否在代码/方法中遗漏了一些关键或明显的东西,可能会以令人困惑的方式歪曲结果?谢谢。