用C语言求一个整数的幂的最有效方法是什么?

// 2^3
pow(2,3) == 8

// 5^5
pow(5,5) == 3125

当前回答

int pow(int const x, unsigned const e) noexcept
{
  return !e ? 1 : 1 == e ? x : (e % 2 ? x : 1) * pow(x * x, e / 2);
  //return !e ? 1 : 1 == e ? x : (((x ^ 1) & -(e % 2)) ^ 1) * pow(x * x, e / 2);
}

是的,它是递归的,但是一个好的优化编译器会优化递归。

其他回答

int pow(int const x, unsigned const e) noexcept
{
  return !e ? 1 : 1 == e ? x : (e % 2 ? x : 1) * pow(x * x, e / 2);
  //return !e ? 1 : 1 == e ? x : (((x ^ 1) & -(e % 2)) ^ 1) * pow(x * x, e / 2);
}

是的,它是递归的,但是一个好的优化编译器会优化递归。

O(log N)的解决方案在Swift…

// Time complexity is O(log N)
func power(_ base: Int, _ exp: Int) -> Int { 

    // 1. If the exponent is 1 then return the number (e.g a^1 == a)
    //Time complexity O(1)
    if exp == 1 { 
        return base
    }

    // 2. Calculate the value of the number raised to half of the exponent. This will be used to calculate the final answer by squaring the result (e.g a^2n == (a^n)^2 == a^n * a^n). The idea is that we can do half the amount of work by obtaining a^n and multiplying the result by itself to get a^2n
    //Time complexity O(log N)
    let tempVal = power(base, exp/2) 

    // 3. If the exponent was odd then decompose the result in such a way that it allows you to divide the exponent in two (e.g. a^(2n+1) == a^1 * a^2n == a^1 * a^n * a^n). If the eponent is even then the result must be the base raised to half the exponent squared (e.g. a^2n == a^n * a^n = (a^n)^2).
    //Time complexity O(1)
    return (exp % 2 == 1 ? base : 1) * tempVal * tempVal 

}

我注意到gnu-GMP的标准指数平方算法有些奇怪:

我实现了两个几乎相同的函数——一个是幂模函数,使用最普通的二进制指数平方算法,

标签______2 ()

然后另一个基本相同的概念,但重新映射为每轮除以10,而不是除以2,

标签______10 ()

.

 ( time ( jot - 1456 9999999999 6671 | pvE0 | 

gawk -Mbe '
function ______10(_, __, ___, ____, _____, _______) {
      __ = +__
    ____ = (____+=_____=____^= \
           (_ %=___=+___)<_)+____++^____—

    while (__) {
        if (_______= __%____) {
            if (__==_______) {
                return (_^__ *_____) %___
            }
            __-=_______
            _____ = (_^_______*_____) %___
        }
        __/=____
        _ = _^____%___
    }
}
function ______2(_, __, ___, ____, _____) {
    __=+__
    ____+=____=_____^=(_%=___=+___)<_
    while (__) {
        if (__ %____) {
            if (__<____) {
                return (_*_____) %___
            }
            _____ = (_____*_) %___
            --__
        }
        __/=____
        _= (_*_) %___
    }
} 
BEGIN {
    OFMT = CONVFMT = "%.250g"

    __ = (___=_^= FS=OFS= "=")(_<_)

    _____ = __^(_=3)^--_ * ++_-(_+_)^_
    ______ = _^(_+_)-_ + _^!_

    _______ = int(______*_____)
    ________ = 10 ^ 5 + 1
    _________ = 8 ^ 4 * 2 - 1
}

GNU Awk 5.1.1, API: 3.1 (GNU MPFR 4.1.0, GNU MP 6.2.1)

.

($ + + NF = ______10(_ = ___美元,NR %________ +_________,_______*(_- 11))) ^ !___“

     out9: 48.4MiB 0:00:08 [6.02MiB/s] [6.02MiB/s] [ <=> ]
      in0: 15.6MiB 0:00:08 [1.95MiB/s] [1.95MiB/s] [ <=> ]
( jot - 1456 9999999999 6671 | pvE 0.1 in0 | gawk -Mbe ; )  

8.31s user 0.06s system 103% cpu 8.058 total
ffa16aa937b7beca66a173ccbf8e1e12  stdin

($ + + NF = ______ 2(_ = ___美元,NR %________ +_________,_______*(_- 11))) ^ !___“

     out9: 48.4MiB 0:00:12 [3.78MiB/s] [3.78MiB/s] [<=> ]
      in0: 15.6MiB 0:00:12 [1.22MiB/s] [1.22MiB/s] [ <=> ]
( jot - 1456 9999999999 6671 | pvE 0.1 in0 | gawk -Mbe ; )  

13.05s user 0.07s system 102% cpu 12.821 total
ffa16aa937b7beca66a173ccbf8e1e12  stdin

由于一些非常违反直觉和我不知道的原因,对于我投入的各种各样的输入,div-10变体几乎总是更快。这是两个哈希值之间的匹配,这让它真正令人困惑,尽管计算机显然没有内置在10进制的范例中。

我是否在代码/方法中遗漏了一些关键或明显的东西,可能会以令人困惑的方式歪曲结果?谢谢。

另一个实现(在Java中)。可能不是最有效的解决方案,但迭代次数与指数解相同。

public static long pow(long base, long exp){        
    if(exp ==0){
        return 1;
    }
    if(exp ==1){
        return base;
    }

    if(exp % 2 == 0){
        long half = pow(base, exp/2);
        return half * half;
    }else{
        long half = pow(base, (exp -1)/2);
        return base * half * half;
    }       
}

这是对平方求幂效率的后续讨论。

这种方法的优点是它在log(n)时间内运行。例如,如果你要计算一个巨大的数,比如x^1048575(2^20 - 1),你只需要循环20次,而不是使用朴素方法的100万+次。

此外,在代码复杂性方面,它比试图找到最优的乘法序列更简单,这是la Pramod的建议。

编辑:

我想我应该在有人指责我可能会溢出之前澄清一下。这种方法假设您有某种巨大的int库。