用C语言求一个整数的幂的最有效方法是什么?

// 2^3
pow(2,3) == 8

// 5^5
pow(5,5) == 3125

当前回答

int pow(int const x, unsigned const e) noexcept
{
  return !e ? 1 : 1 == e ? x : (e % 2 ? x : 1) * pow(x * x, e / 2);
  //return !e ? 1 : 1 == e ? x : (((x ^ 1) & -(e % 2)) ^ 1) * pow(x * x, e / 2);
}

是的,它是递归的,但是一个好的优化编译器会优化递归。

其他回答

我的情况有点不同,我试图用一种力量创造一个面具,但我想无论如何我都要分享我找到的解决方案。

显然,它只适用于2的幂。

Mask1 = 1 << (Exponent - 1);
Mask2 = Mask1 - 1;
return Mask1 + Mask2;
int pow( int base, int exponent)

{   // Does not work for negative exponents. (But that would be leaving the range of int) 
    if (exponent == 0) return 1;  // base case;
    int temp = pow(base, exponent/2);
    if (exponent % 2 == 0)
        return temp * temp; 
    else
        return (base * temp * temp);
}

更一般的解决方案考虑负指数

private static int pow(int base, int exponent) {

    int result = 1;
    if (exponent == 0)
        return result; // base case;

    if (exponent < 0)
        return 1 / pow(base, -exponent);
    int temp = pow(base, exponent / 2);
    if (exponent % 2 == 0)
        return temp * temp;
    else
        return (base * temp * temp);
}

平方求幂。

int ipow(int base, int exp)
{
    int result = 1;
    for (;;)
    {
        if (exp & 1)
            result *= base;
        exp >>= 1;
        if (!exp)
            break;
        base *= base;
    }

    return result;
}

这是在非对称密码学中对大数进行模求幂的标准方法。

一种非常特殊的情况是,当你需要2^(-x ^ y)时,其中x当然是负的y太大了,不能对int型进行移位。你仍然可以用浮点数在常数时间内完成2^x。

struct IeeeFloat
{

    unsigned int base : 23;
    unsigned int exponent : 8;
    unsigned int signBit : 1;
};


union IeeeFloatUnion
{
    IeeeFloat brokenOut;
    float f;
};

inline float twoToThe(char exponent)
{
    // notice how the range checking is already done on the exponent var 
    static IeeeFloatUnion u;
    u.f = 2.0;
    // Change the exponent part of the float
    u.brokenOut.exponent += (exponent - 1);
    return (u.f);
}

使用double作为基底类型,可以得到更多的2的幂。 (非常感谢评论者帮助整理这篇文章)。

还有一种可能性是,学习更多关于IEEE浮点数的知识,其他幂运算的特殊情况可能会出现。