如何在函数中创建或使用全局变量?

如何在其他函数中使用一个函数中定义的全局变量?


未能在适当的地方使用全局关键字通常会导致UnboundLocalError。在第一次使用后重新分配局部变量时,UnboundLocalError中解释了这方面的精确规则。一般来说,当寻求解释时,请将其他问题作为该问题的副本,当某人只需要知道全局关键字时,请关闭该问题。


当前回答

Initialized = 0  #Here This Initialized is global variable  

def Initialize():
     print("Initialized!")
     Initialized = 1  #This is local variable and assigning 1 to local variable
while Initialized == 0:  

这里我们比较全局变量Initialized为0,因此当循环条件为true时

     Initialize()

函数将被调用。循环将是无限的

#if we do Initialized=1 then loop will terminate  

else:
    print("Lets do something else now!")

其他回答

Initialized = 0  #Here This Initialized is global variable  

def Initialize():
     print("Initialized!")
     Initialized = 1  #This is local variable and assigning 1 to local variable
while Initialized == 0:  

这里我们比较全局变量Initialized为0,因此当循环条件为true时

     Initialize()

函数将被调用。循环将是无限的

#if we do Initialized=1 then loop will terminate  

else:
    print("Lets do something else now!")

如果要在函数中引用全局变量,可以使用global关键字声明哪些变量是全局变量。您不必在所有情况下都使用它(正如这里有人错误地宣称的那样)-如果表达式中引用的名称无法在定义该函数的函数的局部作用域中找到,则会在全局变量中查找该名称。

但是,如果您分配给函数中未声明为全局的新变量,则它将隐式声明为局部变量,并且它可能会覆盖同名的任何现有全局变量。

此外,全局变量是有用的,与一些OOP狂热者的说法相反——特别是对于较小的脚本,OOP是过度的。

我补充了这一点,因为我在其他任何答案中都没有看到它,它可能对正在与类似问题作斗争的人有用。globals()函数返回一个可变的全局符号字典,您可以在其中“神奇地”使数据可用于代码的其余部分。例如:

from pickle import load
def loaditem(name):
    with open(r"C:\pickle\file\location"+"\{}.dat".format(name), "rb") as openfile:
        globals()[name] = load(openfile)
    return True

and

from pickle import dump
def dumpfile(name):
    with open(name+".dat", "wb") as outfile:
        dump(globals()[name], outfile)
    return True

将只允许您将变量转储/加载到全局命名空间中。超级方便,没有麻烦,没有麻烦。很确定它只是Python 3。

写入全局数组的显式元素显然不需要全局声明,尽管“批发”写入它确实有这样的要求:

import numpy as np

hostValue = 3.14159
hostArray = np.array([2., 3.])
hostMatrix = np.array([[1.0, 0.0],[ 0.0, 1.0]])

def func1():
    global hostValue    # mandatory, else local.
    hostValue = 2.0

def func2():
    global hostValue    # mandatory, else UnboundLocalError.
    hostValue += 1.0

def func3():
    global hostArray    # mandatory, else local.
    hostArray = np.array([14., 15.])

def func4():            # no need for globals
    hostArray[0] = 123.4

def func5():            # no need for globals
    hostArray[1] += 1.0

def func6():            # no need for globals
    hostMatrix[1][1] = 12.

def func7():            # no need for globals
    hostMatrix[0][0] += 0.33

func1()
print "After func1(), hostValue = ", hostValue
func2()
print "After func2(), hostValue = ", hostValue
func3()
print "After func3(), hostArray = ", hostArray
func4()
print "After func4(), hostArray = ", hostArray
func5()
print "After func5(), hostArray = ", hostArray
func6()
print "After func6(), hostMatrix = \n", hostMatrix
func7()
print "After func7(), hostMatrix = \n", hostMatrix

全局变量很好-除了多处理

与不同平台/环境上的多处理相关的全局变量因为一边是Windows/Mac OS,另一边是Linux,这很麻烦。

我将用一个简单的例子向你展示这一点,指出我前段时间遇到的一个问题。

如果你想了解为什么Windows/MacOs和Linux上的情况不同需要知道的是,启动新进程的默认机制。。。

Windows/MacOs是“种子”Linux是“fork”

它们在内存分配和初始化方面有所不同。。。(但我不想谈这个此处)。

让我们看看这个问题/例子。。。

import multiprocessing

counter = 0

def do(task_id):
    global counter
    counter +=1
    print(f'task {task_id}: counter = {counter}')

if __name__ == '__main__':

    pool = multiprocessing.Pool(processes=4)
    task_ids = list(range(4))
    pool.map(do, task_ids)

窗户

如果你在Windows上运行这个(我想也是在MacOS上),你会得到以下输出。。。

task 0: counter = 1
task 1: counter = 2
task 2: counter = 3
task 3: counter = 4

Linux系统

如果您在Linux上运行此程序,则会得到以下结果。

task 0: counter = 1
task 1: counter = 1
task 2: counter = 1
task 3: counter = 1