如何在函数中创建或使用全局变量?
如何在其他函数中使用一个函数中定义的全局变量?
未能在适当的地方使用全局关键字通常会导致UnboundLocalError。在第一次使用后重新分配局部变量时,UnboundLocalError中解释了这方面的精确规则。一般来说,当寻求解释时,请将其他问题作为该问题的副本,当某人只需要知道全局关键字时,请关闭该问题。
如何在函数中创建或使用全局变量?
如何在其他函数中使用一个函数中定义的全局变量?
未能在适当的地方使用全局关键字通常会导致UnboundLocalError。在第一次使用后重新分配局部变量时,UnboundLocalError中解释了这方面的精确规则。一般来说,当寻求解释时,请将其他问题作为该问题的副本,当某人只需要知道全局关键字时,请关闭该问题。
当前回答
作为附加组件,使用一个文件来包含所有本地声明的全局变量,然后导入为:
文件initval.py:
Stocksin = 300
Prices = []
文件getstocks.py:
import initval as iv
def getmystocks():
iv.Stocksin = getstockcount()
def getmycharts():
for ic in range(iv.Stocksin):
其他回答
事实证明,答案总是很简单。
下面是一个小示例模块,它以一种简单的方式在主定义中显示:
def five(enterAnumber,sumation):
global helper
helper = enterAnumber + sumation
def isTheNumber():
return helper
以下是如何在主要定义中显示它:
import TestPy
def main():
atest = TestPy
atest.five(5,8)
print(atest.isTheNumber())
if __name__ == '__main__':
main()
这个简单的代码就是这样工作的,它会执行。我希望这有帮助。
写入全局数组的显式元素显然不需要全局声明,尽管“批发”写入它确实有这样的要求:
import numpy as np
hostValue = 3.14159
hostArray = np.array([2., 3.])
hostMatrix = np.array([[1.0, 0.0],[ 0.0, 1.0]])
def func1():
global hostValue # mandatory, else local.
hostValue = 2.0
def func2():
global hostValue # mandatory, else UnboundLocalError.
hostValue += 1.0
def func3():
global hostArray # mandatory, else local.
hostArray = np.array([14., 15.])
def func4(): # no need for globals
hostArray[0] = 123.4
def func5(): # no need for globals
hostArray[1] += 1.0
def func6(): # no need for globals
hostMatrix[1][1] = 12.
def func7(): # no need for globals
hostMatrix[0][0] += 0.33
func1()
print "After func1(), hostValue = ", hostValue
func2()
print "After func2(), hostValue = ", hostValue
func3()
print "After func3(), hostArray = ", hostArray
func4()
print "After func4(), hostArray = ", hostArray
func5()
print "After func5(), hostArray = ", hostArray
func6()
print "After func6(), hostMatrix = \n", hostMatrix
func7()
print "After func7(), hostMatrix = \n", hostMatrix
Python使用一个简单的启发式方法来决定应该从哪个范围加载变量,在本地和全局之间。如果变量名出现在赋值的左侧,但未声明为全局变量,则假定它是局部变量。如果它没有出现在赋值的左侧,则假定它是全局的。
>>> import dis
>>> def foo():
... global bar
... baz = 5
... print bar
... print baz
... print quux
...
>>> dis.disassemble(foo.func_code)
3 0 LOAD_CONST 1 (5)
3 STORE_FAST 0 (baz)
4 6 LOAD_GLOBAL 0 (bar)
9 PRINT_ITEM
10 PRINT_NEWLINE
5 11 LOAD_FAST 0 (baz)
14 PRINT_ITEM
15 PRINT_NEWLINE
6 16 LOAD_GLOBAL 1 (quux)
19 PRINT_ITEM
20 PRINT_NEWLINE
21 LOAD_CONST 0 (None)
24 RETURN_VALUE
>>>
看看baz(出现在foo()赋值的左侧)是如何成为唯一的LOAD_FAST变量的。
引用要显示更改的类命名空间。
在本例中,runner使用文件config中的max。我希望我的测试在跑步者使用时更改max的值。
main/config.py
max = 15000
主/运行程序.py
from main import config
def check_threads():
return max < thread_count
测试/runner_test.py
from main import runner # <----- 1. add file
from main.runner import check_threads
class RunnerTest(unittest):
def test_threads(self):
runner.max = 0 # <----- 2. set global
check_threads()
如果您有一个同名的局部变量,您可能需要使用globals()函数。
globals()['your_global_var'] = 42