如何在函数中创建或使用全局变量?
如何在其他函数中使用一个函数中定义的全局变量?
未能在适当的地方使用全局关键字通常会导致UnboundLocalError。在第一次使用后重新分配局部变量时,UnboundLocalError中解释了这方面的精确规则。一般来说,当寻求解释时,请将其他问题作为该问题的副本,当某人只需要知道全局关键字时,请关闭该问题。
如何在函数中创建或使用全局变量?
如何在其他函数中使用一个函数中定义的全局变量?
未能在适当的地方使用全局关键字通常会导致UnboundLocalError。在第一次使用后重新分配局部变量时,UnboundLocalError中解释了这方面的精确规则。一般来说,当寻求解释时,请将其他问题作为该问题的副本,当某人只需要知道全局关键字时,请关闭该问题。
当前回答
如果我正确理解了您的情况,那么您看到的是Python如何处理本地(函数)和全局(模块)命名空间的结果。
假设你有这样一个模块:
# sample.py
_my_global = 5
def func1():
_my_global = 42
def func2():
print _my_global
func1()
func2()
您可能希望它打印42,但实际上它打印5。如上所述,如果向func1()添加一个“全局”声明,那么func2()将打印42。
def func1():
global _my_global
_my_global = 42
这里发生的情况是,Python假设在函数中的任何地方,任何分配给的名称都是该函数的本地名称,除非另有明确说明。如果它只是从一个名称中读取,并且该名称在本地不存在,那么它将尝试在任何包含范围(例如模块的全局范围)中查找该名称。
因此,当将42指定给名称_my_global时,Python将创建一个局部变量,该变量将覆盖同名的全局变量。当func1()返回时,该local超出范围并被垃圾收集;同时,func2()只能看到(未修改的)全局名称。请注意,这个命名空间决定发生在编译时,而不是在运行时——如果在赋值之前读取func1()内部的_my_global值,则会得到UnboundLocalError,因为Python已经决定它必须是一个本地变量,但它还没有与之关联的任何值。但通过使用“global”语句,您告诉Python应该在其他地方查找名称,而不是在本地分配。
(我认为,这种行为主要源于对本地名称空间的优化——如果没有这种行为,Python的VM每次在函数内部分配新名称时都需要执行至少三次名称查找(以确保该名称在模块/内置级别上不存在),这将大大降低非常常见的操作速度。)
其他回答
您可以在其他函数中使用全局变量,方法是在为其赋值的每个函数中将其声明为全局变量:
globvar = 0
def set_globvar_to_one():
global globvar # Needed to modify global copy of globvar
globvar = 1
def print_globvar():
print(globvar) # No need for global declaration to read value of globvar
set_globvar_to_one()
print_globvar() # Prints 1
由于不清楚globvar=1是创建本地变量还是更改全局变量,Python默认创建本地变量,并使用全局关键字显式选择其他行为。
如果要在模块间共享全局变量,请参阅其他答案。
如果您有一个同名的局部变量,您可能需要使用globals()函数。
globals()['your_global_var'] = 42
引用要显示更改的类命名空间。
在本例中,runner使用文件config中的max。我希望我的测试在跑步者使用时更改max的值。
main/config.py
max = 15000
主/运行程序.py
from main import config
def check_threads():
return max < thread_count
测试/runner_test.py
from main import runner # <----- 1. add file
from main.runner import check_threads
class RunnerTest(unittest):
def test_threads(self):
runner.max = 0 # <----- 2. set global
check_threads()
写入全局数组的显式元素显然不需要全局声明,尽管“批发”写入它确实有这样的要求:
import numpy as np
hostValue = 3.14159
hostArray = np.array([2., 3.])
hostMatrix = np.array([[1.0, 0.0],[ 0.0, 1.0]])
def func1():
global hostValue # mandatory, else local.
hostValue = 2.0
def func2():
global hostValue # mandatory, else UnboundLocalError.
hostValue += 1.0
def func3():
global hostArray # mandatory, else local.
hostArray = np.array([14., 15.])
def func4(): # no need for globals
hostArray[0] = 123.4
def func5(): # no need for globals
hostArray[1] += 1.0
def func6(): # no need for globals
hostMatrix[1][1] = 12.
def func7(): # no need for globals
hostMatrix[0][0] += 0.33
func1()
print "After func1(), hostValue = ", hostValue
func2()
print "After func2(), hostValue = ", hostValue
func3()
print "After func3(), hostArray = ", hostArray
func4()
print "After func4(), hostArray = ", hostArray
func5()
print "After func5(), hostArray = ", hostArray
func6()
print "After func6(), hostMatrix = \n", hostMatrix
func7()
print "After func7(), hostMatrix = \n", hostMatrix
试试看:
def x1():
global x
x += 1
print('x1: ', x)
def x2():
global x
x = x+1
print('x2: ', x)
x = 5
print('x: ', x)
x1()
x2()
# Output:
# x: 5
# x1: 6
# x2: 7