如何在函数中创建或使用全局变量?

如何在其他函数中使用一个函数中定义的全局变量?


未能在适当的地方使用全局关键字通常会导致UnboundLocalError。在第一次使用后重新分配局部变量时,UnboundLocalError中解释了这方面的精确规则。一般来说,当寻求解释时,请将其他问题作为该问题的副本,当某人只需要知道全局关键字时,请关闭该问题。


当前回答

Python使用一个简单的启发式方法来决定应该从哪个范围加载变量,在本地和全局之间。如果变量名出现在赋值的左侧,但未声明为全局变量,则假定它是局部变量。如果它没有出现在赋值的左侧,则假定它是全局的。

>>> import dis
>>> def foo():
...     global bar
...     baz = 5
...     print bar
...     print baz
...     print quux
... 
>>> dis.disassemble(foo.func_code)
  3           0 LOAD_CONST               1 (5)
              3 STORE_FAST               0 (baz)

  4           6 LOAD_GLOBAL              0 (bar)
              9 PRINT_ITEM          
             10 PRINT_NEWLINE       

  5          11 LOAD_FAST                0 (baz)
             14 PRINT_ITEM          
             15 PRINT_NEWLINE       

  6          16 LOAD_GLOBAL              1 (quux)
             19 PRINT_ITEM          
             20 PRINT_NEWLINE       
             21 LOAD_CONST               0 (None)
             24 RETURN_VALUE        
>>> 

看看baz(出现在foo()赋值的左侧)是如何成为唯一的LOAD_FAST变量的。

其他回答

试试看:

def x1():
    global x
    x += 1
    print('x1: ', x)

def x2():
    global x
    x = x+1
    print('x2: ', x)

x = 5
print('x:  ', x)
x1()
x2()

# Output:
# x:   5
# x1:  6
# x2:  7

对于并行执行,如果您不了解正在发生的情况,全局变量可能会导致意外的结果。下面是在多处理中使用全局变量的示例。我们可以清楚地看到,每个过程都使用自己的变量副本:

import multiprocessing
import os
import random
import sys
import time

def worker(new_value):
    old_value = get_value()
    set_value(random.randint(1, 99))
    print('pid=[{pid}] '
          'old_value=[{old_value:2}] '
          'new_value=[{new_value:2}] '
          'get_value=[{get_value:2}]'.format(
          pid=str(os.getpid()),
          old_value=old_value,
          new_value=new_value,
          get_value=get_value()))

def get_value():
    global global_variable
    return global_variable

def set_value(new_value):
    global global_variable
    global_variable = new_value

global_variable = -1

print('before set_value(), get_value() = [%s]' % get_value())
set_value(new_value=-2)
print('after  set_value(), get_value() = [%s]' % get_value())

processPool = multiprocessing.Pool(processes=5)
processPool.map(func=worker, iterable=range(15))

输出:

before set_value(), get_value() = [-1]
after  set_value(), get_value() = [-2]
pid=[53970] old_value=[-2] new_value=[ 0] get_value=[23]
pid=[53971] old_value=[-2] new_value=[ 1] get_value=[42]
pid=[53970] old_value=[23] new_value=[ 4] get_value=[50]
pid=[53970] old_value=[50] new_value=[ 6] get_value=[14]
pid=[53971] old_value=[42] new_value=[ 5] get_value=[31]
pid=[53972] old_value=[-2] new_value=[ 2] get_value=[44]
pid=[53973] old_value=[-2] new_value=[ 3] get_value=[94]
pid=[53970] old_value=[14] new_value=[ 7] get_value=[21]
pid=[53971] old_value=[31] new_value=[ 8] get_value=[34]
pid=[53972] old_value=[44] new_value=[ 9] get_value=[59]
pid=[53973] old_value=[94] new_value=[10] get_value=[87]
pid=[53970] old_value=[21] new_value=[11] get_value=[21]
pid=[53971] old_value=[34] new_value=[12] get_value=[82]
pid=[53972] old_value=[59] new_value=[13] get_value=[ 4]
pid=[53973] old_value=[87] new_value=[14] get_value=[70]

全局变量很好-除了多处理

与不同平台/环境上的多处理相关的全局变量因为一边是Windows/Mac OS,另一边是Linux,这很麻烦。

我将用一个简单的例子向你展示这一点,指出我前段时间遇到的一个问题。

如果你想了解为什么Windows/MacOs和Linux上的情况不同需要知道的是,启动新进程的默认机制。。。

Windows/MacOs是“种子”Linux是“fork”

它们在内存分配和初始化方面有所不同。。。(但我不想谈这个此处)。

让我们看看这个问题/例子。。。

import multiprocessing

counter = 0

def do(task_id):
    global counter
    counter +=1
    print(f'task {task_id}: counter = {counter}')

if __name__ == '__main__':

    pool = multiprocessing.Pool(processes=4)
    task_ids = list(range(4))
    pool.map(do, task_ids)

窗户

如果你在Windows上运行这个(我想也是在MacOS上),你会得到以下输出。。。

task 0: counter = 1
task 1: counter = 2
task 2: counter = 3
task 3: counter = 4

Linux系统

如果您在Linux上运行此程序,则会得到以下结果。

task 0: counter = 1
task 1: counter = 1
task 2: counter = 1
task 3: counter = 1

您可以在其他函数中使用全局变量,方法是在为其赋值的每个函数中将其声明为全局变量:

globvar = 0

def set_globvar_to_one():
    global globvar    # Needed to modify global copy of globvar
    globvar = 1

def print_globvar():
    print(globvar)     # No need for global declaration to read value of globvar

set_globvar_to_one()
print_globvar()       # Prints 1

由于不清楚globvar=1是创建本地变量还是更改全局变量,Python默认创建本地变量,并使用全局关键字显式选择其他行为。

如果要在模块间共享全局变量,请参阅其他答案。

您需要在每个要使用的函数中引用全局变量。

如下:

var = "test"

def printGlobalText():
    global var #wWe are telling to explicitly use the global version
    var = "global from printGlobalText fun."
    print "var from printGlobalText: " + var

def printLocalText():
    #We are NOT telling to explicitly use the global version, so we are creating a local variable
    var = "local version from printLocalText fun"
    print "var from printLocalText: " + var

printGlobalText()
printLocalText()
"""
Output Result:
var from printGlobalText: global from printGlobalText fun.
var from printLocalText: local version from printLocalText
[Finished in 0.1s]
"""