如何在函数中创建或使用全局变量?

如何在其他函数中使用一个函数中定义的全局变量?


未能在适当的地方使用全局关键字通常会导致UnboundLocalError。在第一次使用后重新分配局部变量时,UnboundLocalError中解释了这方面的精确规则。一般来说,当寻求解释时,请将其他问题作为该问题的副本,当某人只需要知道全局关键字时,请关闭该问题。


当前回答

有两种方法可以将变量声明为全局变量:

1.在函数内部分配变量并使用全局线

def declare_a_global_variable():
    global global_variable_1
    global_variable_1 = 1

# Note to use the function to global variables
declare_a_global_variable() 

2.分配变量外部函数:

global_variable_2 = 2

现在我们可以在其他函数中使用这些声明的全局变量:

def declare_a_global_variable():
    global global_variable_1
    global_variable_1 = 1

# Note to use the function to global variables
declare_a_global_variable() 
global_variable_2 = 2

def print_variables():
    print(global_variable_1)
    print(global_variable_2)
print_variables() # prints 1 & 2

注1:

如果要更改另一个函数(如update_variables())中的全局变量,则应在分配变量之前在该函数中使用全局行:

global_variable_1 = 1
global_variable_2 = 2

def update_variables():
    global global_variable_1
    global_variable_1 = 11
    global_variable_2 = 12 # will update just locally for this function

update_variables()
print(global_variable_1) # prints 11
print(global_variable_2) # prints 2

注2:

在函数内部不使用全局行时,列表和字典变量的注释1有一个例外:

# declaring some global variables
variable = 'peter'
list_variable_1 = ['a','b']
list_variable_2 = ['c','d']

def update_global_variables():
    """without using global line"""
    variable = 'PETER' # won't update in global scope
    list_variable_1 = ['A','B'] # won't update in global scope
    list_variable_2[0] = 'C' # updated in global scope surprisingly this way
    list_variable_2[1] = 'D' # updated in global scope surprisingly this way

update_global_variables()

print('variable is: %s'%variable) # prints peter
print('list_variable_1 is: %s'%list_variable_1) # prints ['a', 'b']
print('list_variable_2 is: %s'%list_variable_2) # prints ['C', 'D']

其他回答

有两种方法可以将变量声明为全局变量:

1.在函数内部分配变量并使用全局线

def declare_a_global_variable():
    global global_variable_1
    global_variable_1 = 1

# Note to use the function to global variables
declare_a_global_variable() 

2.分配变量外部函数:

global_variable_2 = 2

现在我们可以在其他函数中使用这些声明的全局变量:

def declare_a_global_variable():
    global global_variable_1
    global_variable_1 = 1

# Note to use the function to global variables
declare_a_global_variable() 
global_variable_2 = 2

def print_variables():
    print(global_variable_1)
    print(global_variable_2)
print_variables() # prints 1 & 2

注1:

如果要更改另一个函数(如update_variables())中的全局变量,则应在分配变量之前在该函数中使用全局行:

global_variable_1 = 1
global_variable_2 = 2

def update_variables():
    global global_variable_1
    global_variable_1 = 11
    global_variable_2 = 12 # will update just locally for this function

update_variables()
print(global_variable_1) # prints 11
print(global_variable_2) # prints 2

注2:

在函数内部不使用全局行时,列表和字典变量的注释1有一个例外:

# declaring some global variables
variable = 'peter'
list_variable_1 = ['a','b']
list_variable_2 = ['c','d']

def update_global_variables():
    """without using global line"""
    variable = 'PETER' # won't update in global scope
    list_variable_1 = ['A','B'] # won't update in global scope
    list_variable_2[0] = 'C' # updated in global scope surprisingly this way
    list_variable_2[1] = 'D' # updated in global scope surprisingly this way

update_global_variables()

print('variable is: %s'%variable) # prints peter
print('list_variable_1 is: %s'%list_variable_1) # prints ['a', 'b']
print('list_variable_2 is: %s'%list_variable_2) # prints ['C', 'D']

引用要显示更改的类命名空间。

在本例中,runner使用文件config中的max。我希望我的测试在跑步者使用时更改max的值。

main/config.py

max = 15000

主/运行程序.py

from main import config
def check_threads():
    return max < thread_count 

测试/runner_test.py

from main import runner                # <----- 1. add file
from main.runner import check_threads
class RunnerTest(unittest):
   def test_threads(self):
       runner.max = 0                  # <----- 2. set global 
       check_threads()

类似此代码:

myVar = 12

def myFunc():
  myVar += 12

Key:

如果在字符串外部声明变量,它将变为全局变量。

如果在字符串中声明变量,它将变为本地变量。

如果要在字符串中声明全局变量,请在要声明的变量之前使用关键字global:

myVar = 124
def myFunc():
  global myVar2
  myVar2 = 100
myFunc()
print(myVar2)

然后文档中有100个。

写入全局数组的显式元素显然不需要全局声明,尽管“批发”写入它确实有这样的要求:

import numpy as np

hostValue = 3.14159
hostArray = np.array([2., 3.])
hostMatrix = np.array([[1.0, 0.0],[ 0.0, 1.0]])

def func1():
    global hostValue    # mandatory, else local.
    hostValue = 2.0

def func2():
    global hostValue    # mandatory, else UnboundLocalError.
    hostValue += 1.0

def func3():
    global hostArray    # mandatory, else local.
    hostArray = np.array([14., 15.])

def func4():            # no need for globals
    hostArray[0] = 123.4

def func5():            # no need for globals
    hostArray[1] += 1.0

def func6():            # no need for globals
    hostMatrix[1][1] = 12.

def func7():            # no need for globals
    hostMatrix[0][0] += 0.33

func1()
print "After func1(), hostValue = ", hostValue
func2()
print "After func2(), hostValue = ", hostValue
func3()
print "After func3(), hostArray = ", hostArray
func4()
print "After func4(), hostArray = ", hostArray
func5()
print "After func5(), hostArray = ", hostArray
func6()
print "After func6(), hostMatrix = \n", hostMatrix
func7()
print "After func7(), hostMatrix = \n", hostMatrix

如果我正确理解了您的情况,那么您看到的是Python如何处理本地(函数)和全局(模块)命名空间的结果。

假设你有这样一个模块:

# sample.py
_my_global = 5

def func1():
    _my_global = 42

def func2():
    print _my_global

func1()
func2()

您可能希望它打印42,但实际上它打印5。如上所述,如果向func1()添加一个“全局”声明,那么func2()将打印42。

def func1():
    global _my_global 
    _my_global = 42

这里发生的情况是,Python假设在函数中的任何地方,任何分配给的名称都是该函数的本地名称,除非另有明确说明。如果它只是从一个名称中读取,并且该名称在本地不存在,那么它将尝试在任何包含范围(例如模块的全局范围)中查找该名称。

因此,当将42指定给名称_my_global时,Python将创建一个局部变量,该变量将覆盖同名的全局变量。当func1()返回时,该local超出范围并被垃圾收集;同时,func2()只能看到(未修改的)全局名称。请注意,这个命名空间决定发生在编译时,而不是在运行时——如果在赋值之前读取func1()内部的_my_global值,则会得到UnboundLocalError,因为Python已经决定它必须是一个本地变量,但它还没有与之关联的任何值。但通过使用“global”语句,您告诉Python应该在其他地方查找名称,而不是在本地分配。

(我认为,这种行为主要源于对本地名称空间的优化——如果没有这种行为,Python的VM每次在函数内部分配新名称时都需要执行至少三次名称查找(以确保该名称在模块/内置级别上不存在),这将大大降低非常常见的操作速度。)