你如何从给定的N个数字中测试所有可能的加法组合,使它们加起来得到给定的最终数字?

一个简单的例子:

要添加的数字集:N ={1,5,22,15,0,…} 期望结果:12345


当前回答

c#版本的@msalvadores代码的答案

void Main()
{
    int[] numbers = {3,9,8,4,5,7,10};
    int target = 15;
    sum_up(new List<int>(numbers.ToList()),target);
}

static void sum_up_recursive(List<int> numbers, int target, List<int> part)
{
   int s = 0;
   foreach (int x in part)
   {
       s += x;
   }
   if (s == target)
   {
        Console.WriteLine("sum(" + string.Join(",", part.Select(n => n.ToString()).ToArray()) + ")=" + target);
   }
   if (s >= target)
   {
        return;
   }
   for (int i = 0;i < numbers.Count;i++)
   {
         var remaining = new List<int>();
         int n = numbers[i];
         for (int j = i + 1; j < numbers.Count;j++)
         {
             remaining.Add(numbers[j]);
         }
         var part_rec = new List<int>(part);
         part_rec.Add(n);
         sum_up_recursive(remaining,target,part_rec);
   }
}
static void sum_up(List<int> numbers, int target)
{
    sum_up_recursive(numbers,target,new List<int>());
}

其他回答

Java解决方案的Swift 3转换(by @JeremyThompson)

protocol _IntType { }
extension Int: _IntType {}


extension Array where Element: _IntType {

    func subsets(to: Int) -> [[Element]]? {

        func sum_up_recursive(_ numbers: [Element], _ target: Int, _ partial: [Element], _ solution: inout [[Element]]) {

            var sum: Int = 0
            for x in partial {
                sum += x as! Int
            }

            if sum == target {
                solution.append(partial)
            }

            guard sum < target else {
                return
            }

            for i in stride(from: 0, to: numbers.count, by: 1) {

                var remaining = [Element]()

                for j in stride(from: i + 1, to: numbers.count, by: 1) {
                    remaining.append(numbers[j])
                }

                var partial_rec = [Element](partial)
                partial_rec.append(numbers[i])

                sum_up_recursive(remaining, target, partial_rec, &solution)
            }
        }

        var solutions = [[Element]]()
        sum_up_recursive(self, to, [Element](), &solutions)

        return solutions.count > 0 ? solutions : nil
    }

}

用法:

let numbers = [3, 9, 8, 4, 5, 7, 10]

if let solution = numbers.subsets(to: 15) {
    print(solution) // output: [[3, 8, 4], [3, 5, 7], [8, 7], [5, 10]]
} else {
    print("not possible")
}

我将c#示例移植到Objective-c,并没有在响应中看到它:

//Usage
NSMutableArray* numberList = [[NSMutableArray alloc] init];
NSMutableArray* partial = [[NSMutableArray alloc] init];
int target = 16;
for( int i = 1; i<target; i++ )
{ [numberList addObject:@(i)]; }
[self findSums:numberList target:target part:partial];


//*******************************************************************
// Finds combinations of numbers that add up to target recursively
//*******************************************************************
-(void)findSums:(NSMutableArray*)numbers target:(int)target part:(NSMutableArray*)partial
{
    int s = 0;
    for (NSNumber* x in partial)
    { s += [x intValue]; }

    if (s == target)
    { NSLog(@"Sum[%@]", partial); }

    if (s >= target)
    { return; }

    for (int i = 0;i < [numbers count];i++ )
    {
        int n = [numbers[i] intValue];
        NSMutableArray* remaining = [[NSMutableArray alloc] init];
        for (int j = i + 1; j < [numbers count];j++)
        { [remaining addObject:@([numbers[j] intValue])]; }

        NSMutableArray* partRec = [[NSMutableArray alloc] initWithArray:partial];
        [partRec addObject:@(n)];
        [self findSums:remaining target:target part:partRec];
    }
}

这个问题可以通过所有可能的和的递归组合来解决,过滤掉那些达到目标的和。下面是Python中的算法:

def subset_sum(numbers, target, partial=[]):
    s = sum(partial)

    # check if the partial sum is equals to target
    if s == target: 
        print "sum(%s)=%s" % (partial, target)
    if s >= target:
        return  # if we reach the number why bother to continue
    
    for i in range(len(numbers)):
        n = numbers[i]
        remaining = numbers[i+1:]
        subset_sum(remaining, target, partial + [n]) 
   

if __name__ == "__main__":
    subset_sum([3,9,8,4,5,7,10],15)

    #Outputs:
    #sum([3, 8, 4])=15
    #sum([3, 5, 7])=15
    #sum([8, 7])=15
    #sum([5, 10])=15

这种类型的算法在接下来的斯坦福大学抽象编程课程中有很好的解释-这个视频非常推荐来理解递归是如何产生解决方案的排列的。

Edit

上面作为一个生成器函数,使它更有用一点。需要Python 3.3+,因为yield来自。

def subset_sum(numbers, target, partial=[], partial_sum=0):
    if partial_sum == target:
        yield partial
    if partial_sum >= target:
        return
    for i, n in enumerate(numbers):
        remaining = numbers[i + 1:]
        yield from subset_sum(remaining, target, partial + [n], partial_sum + n)

下面是相同算法的Java版本:

package tmp;

import java.util.ArrayList;
import java.util.Arrays;

class SumSet {
    static void sum_up_recursive(ArrayList<Integer> numbers, int target, ArrayList<Integer> partial) {
       int s = 0;
       for (int x: partial) s += x;
       if (s == target)
            System.out.println("sum("+Arrays.toString(partial.toArray())+")="+target);
       if (s >= target)
            return;
       for(int i=0;i<numbers.size();i++) {
             ArrayList<Integer> remaining = new ArrayList<Integer>();
             int n = numbers.get(i);
             for (int j=i+1; j<numbers.size();j++) remaining.add(numbers.get(j));
             ArrayList<Integer> partial_rec = new ArrayList<Integer>(partial);
             partial_rec.add(n);
             sum_up_recursive(remaining,target,partial_rec);
       }
    }
    static void sum_up(ArrayList<Integer> numbers, int target) {
        sum_up_recursive(numbers,target,new ArrayList<Integer>());
    }
    public static void main(String args[]) {
        Integer[] numbers = {3,9,8,4,5,7,10};
        int target = 15;
        sum_up(new ArrayList<Integer>(Arrays.asList(numbers)),target);
    }
}

这是完全相同的启发式。我的Java有点生疏,但我认为很容易理解。

Java解决方案的c#转换(by @JeremyThompson)

public static void Main(string[] args)
{
    List<int> numbers = new List<int>() { 3, 9, 8, 4, 5, 7, 10 };
    int target = 15;
    sum_up(numbers, target);
}

private static void sum_up(List<int> numbers, int target)
{
    sum_up_recursive(numbers, target, new List<int>());
}

private static void sum_up_recursive(List<int> numbers, int target, List<int> partial)
{
    int s = 0;
    foreach (int x in partial) s += x;

    if (s == target)
        Console.WriteLine("sum(" + string.Join(",", partial.ToArray()) + ")=" + target);

    if (s >= target)
        return;

    for (int i = 0; i < numbers.Count; i++)
    {
        List<int> remaining = new List<int>();
        int n = numbers[i];
        for (int j = i + 1; j < numbers.Count; j++) remaining.Add(numbers[j]);

        List<int> partial_rec = new List<int>(partial);
        partial_rec.Add(n);
        sum_up_recursive(remaining, target, partial_rec);
    }
}

Ruby解决方案:(by @emaillenin)

def subset_sum(numbers, target, partial=[])
  s = partial.inject 0, :+
# check if the partial sum is equals to target

  puts "sum(#{partial})=#{target}" if s == target

  return if s >= target # if we reach the number why bother to continue

  (0..(numbers.length - 1)).each do |i|
    n = numbers[i]
    remaining = numbers.drop(i+1)
    subset_sum(remaining, target, partial + [n])
  end
end

subset_sum([3,9,8,4,5,7,10],15)

编辑:复杂性讨论

正如其他人提到的,这是一个np难题。它可以在O(2^n)的指数时间内求解,例如n=10,将有1024个可能的解。如果你要达到的目标是在一个较低的范围内,那么这个算法是有效的。例如:

Subset_sum([1,2,3,4,5,6,7,8,9,10],100000)生成1024个分支,因为目标永远无法过滤出可能的解。

另一方面,subset_sum([1,2,3,4,5,6,7,8,9,10],10)只生成175个分支,因为达到10的目标要过滤掉许多组合。

如果N和目标都是很大的数字,那么就应该得到近似的解。

我想我应该用这个问题的答案,但我不能,所以这是我的答案。它使用的是《计算机程序的结构和解释》中答案的修改版本。我认为这是一个更好的递归解,应该更能取悦纯粹主义者。

我的答案是用Scala(如果我的Scala很烂,我很抱歉,我刚刚开始学习)。findsumcombination的疯狂之处在于对递归的原始列表进行排序和惟一,以防止欺骗。

def findSumCombinations(target: Int, numbers: List[Int]): Int = {
  cc(target, numbers.distinct.sortWith(_ < _), List())
}

def cc(target: Int, numbers: List[Int], solution: List[Int]): Int = {
  if (target == 0) {println(solution); 1 }
  else if (target < 0 || numbers.length == 0) 0
  else 
    cc(target, numbers.tail, solution) 
    + cc(target - numbers.head, numbers, numbers.head :: solution)
}

使用它:

 > findSumCombinations(12345, List(1,5,22,15,0,..))
 * Prints a whole heap of lists that will sum to the target *

Javascript版本:

function subsetSum(numbers, target, partial) { var s, n, remaining; partial = partial || []; // sum partial s = partial.reduce(function (a, b) { return a + b; }, 0); // check if the partial sum is equals to target if (s === target) { console.log("%s=%s", partial.join("+"), target) } if (s >= target) { return; // if we reach the number why bother to continue } for (var i = 0; i < numbers.length; i++) { n = numbers[i]; remaining = numbers.slice(i + 1); subsetSum(remaining, target, partial.concat([n])); } } subsetSum([3,9,8,4,5,7,10],15); // output: // 3+8+4=15 // 3+5+7=15 // 8+7=15 // 5+10=15