你如何从给定的N个数字中测试所有可能的加法组合,使它们加起来得到给定的最终数字?

一个简单的例子:

要添加的数字集:N ={1,5,22,15,0,…} 期望结果:12345


当前回答

c#版本的@msalvadores代码的答案

void Main()
{
    int[] numbers = {3,9,8,4,5,7,10};
    int target = 15;
    sum_up(new List<int>(numbers.ToList()),target);
}

static void sum_up_recursive(List<int> numbers, int target, List<int> part)
{
   int s = 0;
   foreach (int x in part)
   {
       s += x;
   }
   if (s == target)
   {
        Console.WriteLine("sum(" + string.Join(",", part.Select(n => n.ToString()).ToArray()) + ")=" + target);
   }
   if (s >= target)
   {
        return;
   }
   for (int i = 0;i < numbers.Count;i++)
   {
         var remaining = new List<int>();
         int n = numbers[i];
         for (int j = i + 1; j < numbers.Count;j++)
         {
             remaining.Add(numbers[j]);
         }
         var part_rec = new List<int>(part);
         part_rec.Add(n);
         sum_up_recursive(remaining,target,part_rec);
   }
}
static void sum_up(List<int> numbers, int target)
{
    sum_up_recursive(numbers,target,new List<int>());
}

其他回答

在Haskell:

filter ((==) 12345 . sum) $ subsequences [1,5,22,15,0,..]

J:

(]#~12345=+/@>)(]<@#~[:#:@i.2^#)1 5 22 15 0 ...

正如您可能注意到的,两者都采用相同的方法,并将问题分为两部分:生成幂集的每个成员,并检查每个成员与目标的和。

还有其他的解决方案,但这是最直接的。

在这两种方法中,你是否需要帮助,或者找到另一种方法?

非常有效的算法,使用我几年前用c++写的表格。

如果你设置PRINT 1,它将打印所有的组合(但它不会使用有效的方法)。

它非常高效,在不到10毫秒的时间内计算了超过10^14个组合。

#include <stdio.h>
#include <stdlib.h>
//#include "CTime.h"

#define SUM 300
#define MAXNUMsSIZE 30

#define PRINT 0


long long CountAddToSum(int,int[],int,const int[],int);
void printr(const int[], int);
long long table1[SUM][MAXNUMsSIZE];

int main()
{
    int Nums[]={3,4,5,6,7,9,13,11,12,13,22,35,17,14,18,23,33,54};
    int sum=SUM;
    int size=sizeof(Nums)/sizeof(int);
    int i,j,a[]={0};
    long long N=0;
    //CTime timer1;

    for(i=0;i<SUM;++i) 
        for(j=0;j<MAXNUMsSIZE;++j) 
            table1[i][j]=-1;

    N = CountAddToSum(sum,Nums,size,a,0); //algorithm
    //timer1.Get_Passd();

    //printf("\nN=%lld time=%.1f ms\n", N,timer1.Get_Passd());
    printf("\nN=%lld \n", N);
    getchar();
    return 1;
}

long long CountAddToSum(int s, int arr[],int arrsize, const int r[],int rsize)
{
    static int totalmem=0, maxmem=0;
    int i,*rnew;
    long long result1=0,result2=0;

    if(s<0) return 0;
    if (table1[s][arrsize]>0 && PRINT==0) return table1[s][arrsize];
    if(s==0)
    {
        if(PRINT) printr(r, rsize);
        return 1;
    }
    if(arrsize==0) return 0;

    //else
    rnew=(int*)malloc((rsize+1)*sizeof(int));

    for(i=0;i<rsize;++i) rnew[i]=r[i]; 
    rnew[rsize]=arr[arrsize-1];

    result1 =  CountAddToSum(s,arr,arrsize-1,rnew,rsize);
    result2 =  CountAddToSum(s-arr[arrsize-1],arr,arrsize,rnew,rsize+1);
    table1[s][arrsize]=result1+result2;
    free(rnew);

    return result1+result2;

}

void printr(const int r[], int rsize)
{
    int lastr=r[0],count=0,i;
    for(i=0; i<rsize;++i) 
    {
        if(r[i]==lastr)
            count++;
        else
        {
            printf(" %d*%d ",count,lastr);
            lastr=r[i];
            count=1;
        }
    }
    if(r[i-1]==lastr) printf(" %d*%d ",count,lastr);

    printf("\n");

}

这个问题的解决方案在互联网上已经出现过无数次了。这个问题叫做硬币兑换问题。你可以在http://rosettacode.org/wiki/Count_the_coins上找到答案,在http://jaqm.ro/issues/volume-5,issue-2/pdfs/patterson_harmel.pdf上找到数学模型(或谷歌硬币变化问题)。

顺便说一下,Tsagadai的Scala解决方案很有趣。本例生成1或0。作为一个副作用,它在控制台上列出了所有可能的解决方案。它显示解决方案,但无法以任何方式使其可用。

为了尽可能有用,代码应该返回一个List[List[Int]],以允许获得解决方案的数量(列表列表的长度),“最佳”解决方案(最短的列表),或所有可能的解决方案。

这里有一个例子。它效率很低,但很容易理解。

object Sum extends App {

  def sumCombinations(total: Int, numbers: List[Int]): List[List[Int]] = {

    def add(x: (Int, List[List[Int]]), y: (Int, List[List[Int]])): (Int, List[List[Int]]) = {
      (x._1 + y._1, x._2 ::: y._2)
    }

    def sumCombinations(resultAcc: List[List[Int]], sumAcc: List[Int], total: Int, numbers: List[Int]): (Int, List[List[Int]]) = {
      if (numbers.isEmpty || total < 0) {
        (0, resultAcc)
      } else if (total == 0) {
        (1, sumAcc :: resultAcc)
      } else {
        add(sumCombinations(resultAcc, sumAcc, total, numbers.tail), sumCombinations(resultAcc, numbers.head :: sumAcc, total - numbers.head, numbers))
      }
    }

    sumCombinations(Nil, Nil, total, numbers.sortWith(_ > _))._2
  }

  println(sumCombinations(15, List(1, 2, 5, 10)) mkString "\n")
}

运行时,它显示:

List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2)
List(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2)
List(1, 1, 1, 1, 1, 2, 2, 2, 2, 2)
List(1, 1, 1, 2, 2, 2, 2, 2, 2)
List(1, 2, 2, 2, 2, 2, 2, 2)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5)
List(1, 1, 1, 1, 1, 1, 1, 1, 2, 5)
List(1, 1, 1, 1, 1, 1, 2, 2, 5)
List(1, 1, 1, 1, 2, 2, 2, 5)
List(1, 1, 2, 2, 2, 2, 5)
List(2, 2, 2, 2, 2, 5)
List(1, 1, 1, 1, 1, 5, 5)
List(1, 1, 1, 2, 5, 5)
List(1, 2, 2, 5, 5)
List(5, 5, 5)
List(1, 1, 1, 1, 1, 10)
List(1, 1, 1, 2, 10)
List(1, 2, 2, 10)
List(5, 10)

sumcombination()函数可以单独使用,并且可以进一步分析结果以显示“最佳”解决方案(最短的列表)或解决方案的数量(列表的数量)。

请注意,即使这样,需求也可能无法完全满足。解决方案中每个列表的顺序可能是重要的。在这种情况下,每个列表都必须重复它的元素组合的次数。或者我们只对不同的组合感兴趣。

例如,我们可以考虑List(5,10)应该给出两种组合:List(5,10)和List(10,5)。对于List(5,5,5),它可以给出三种组合,也可以只给出一种组合,这取决于需求。对于整数,这三种排列是等价的,但如果我们处理的是硬币,就像在“硬币更换问题”中一样,它们就不一样了。

Also not stated in the requirements is the question of whether each number (or coin) may be used only once or many times. We could (and we should!) generalize the problem to a list of lists of occurrences of each number. This translates in real life into "what are the possible ways to make an certain amount of money with a set of coins (and not a set of coin values)". The original problem is just a particular case of this one, where we have as many occurrences of each coin as needed to make the total amount with each single coin value.

我不喜欢上面看到的Javascript解决方案。下面是我使用部分应用、闭包和递归构建的一个:

好的,我主要关心的是,如果组合数组能满足目标要求,希望这样你就能找到剩下的组合了

这里只需要设置目标并传递组合数组。

function main() {
    const target = 10
    const getPermutationThatSumT = setTarget(target)
    const permutation = getPermutationThatSumT([1, 4, 2, 5, 6, 7])

    console.log( permutation );
}

我提出的当前实现

function setTarget(target) {
    let partial = [];

    return function permute(input) {
        let i, removed;
        for (i = 0; i < input.length; i++) {
            removed = input.splice(i, 1)[0];
            partial.push(removed);

            const sum = partial.reduce((a, b) => a + b)
            if (sum === target) return partial.slice()
            if (sum < target) permute(input)

            input.splice(i, 0, removed);
            partial.pop();
        }
        return null
    };
}

我将c#示例移植到Objective-c,并没有在响应中看到它:

//Usage
NSMutableArray* numberList = [[NSMutableArray alloc] init];
NSMutableArray* partial = [[NSMutableArray alloc] init];
int target = 16;
for( int i = 1; i<target; i++ )
{ [numberList addObject:@(i)]; }
[self findSums:numberList target:target part:partial];


//*******************************************************************
// Finds combinations of numbers that add up to target recursively
//*******************************************************************
-(void)findSums:(NSMutableArray*)numbers target:(int)target part:(NSMutableArray*)partial
{
    int s = 0;
    for (NSNumber* x in partial)
    { s += [x intValue]; }

    if (s == target)
    { NSLog(@"Sum[%@]", partial); }

    if (s >= target)
    { return; }

    for (int i = 0;i < [numbers count];i++ )
    {
        int n = [numbers[i] intValue];
        NSMutableArray* remaining = [[NSMutableArray alloc] init];
        for (int j = i + 1; j < [numbers count];j++)
        { [remaining addObject:@([numbers[j] intValue])]; }

        NSMutableArray* partRec = [[NSMutableArray alloc] initWithArray:partial];
        [partRec addObject:@(n)];
        [self findSums:remaining target:target part:partRec];
    }
}