你如何从给定的N个数字中测试所有可能的加法组合,使它们加起来得到给定的最终数字?

一个简单的例子:

要添加的数字集:N ={1,5,22,15,0,…} 期望结果:12345


当前回答

非常有效的算法,使用我几年前用c++写的表格。

如果你设置PRINT 1,它将打印所有的组合(但它不会使用有效的方法)。

它非常高效,在不到10毫秒的时间内计算了超过10^14个组合。

#include <stdio.h>
#include <stdlib.h>
//#include "CTime.h"

#define SUM 300
#define MAXNUMsSIZE 30

#define PRINT 0


long long CountAddToSum(int,int[],int,const int[],int);
void printr(const int[], int);
long long table1[SUM][MAXNUMsSIZE];

int main()
{
    int Nums[]={3,4,5,6,7,9,13,11,12,13,22,35,17,14,18,23,33,54};
    int sum=SUM;
    int size=sizeof(Nums)/sizeof(int);
    int i,j,a[]={0};
    long long N=0;
    //CTime timer1;

    for(i=0;i<SUM;++i) 
        for(j=0;j<MAXNUMsSIZE;++j) 
            table1[i][j]=-1;

    N = CountAddToSum(sum,Nums,size,a,0); //algorithm
    //timer1.Get_Passd();

    //printf("\nN=%lld time=%.1f ms\n", N,timer1.Get_Passd());
    printf("\nN=%lld \n", N);
    getchar();
    return 1;
}

long long CountAddToSum(int s, int arr[],int arrsize, const int r[],int rsize)
{
    static int totalmem=0, maxmem=0;
    int i,*rnew;
    long long result1=0,result2=0;

    if(s<0) return 0;
    if (table1[s][arrsize]>0 && PRINT==0) return table1[s][arrsize];
    if(s==0)
    {
        if(PRINT) printr(r, rsize);
        return 1;
    }
    if(arrsize==0) return 0;

    //else
    rnew=(int*)malloc((rsize+1)*sizeof(int));

    for(i=0;i<rsize;++i) rnew[i]=r[i]; 
    rnew[rsize]=arr[arrsize-1];

    result1 =  CountAddToSum(s,arr,arrsize-1,rnew,rsize);
    result2 =  CountAddToSum(s-arr[arrsize-1],arr,arrsize,rnew,rsize+1);
    table1[s][arrsize]=result1+result2;
    free(rnew);

    return result1+result2;

}

void printr(const int r[], int rsize)
{
    int lastr=r[0],count=0,i;
    for(i=0; i<rsize;++i) 
    {
        if(r[i]==lastr)
            count++;
        else
        {
            printf(" %d*%d ",count,lastr);
            lastr=r[i];
            count=1;
        }
    }
    if(r[i-1]==lastr) printf(" %d*%d ",count,lastr);

    printf("\n");

}

其他回答

这个问题可以通过所有可能的和的递归组合来解决,过滤掉那些达到目标的和。下面是Python中的算法:

def subset_sum(numbers, target, partial=[]):
    s = sum(partial)

    # check if the partial sum is equals to target
    if s == target: 
        print "sum(%s)=%s" % (partial, target)
    if s >= target:
        return  # if we reach the number why bother to continue
    
    for i in range(len(numbers)):
        n = numbers[i]
        remaining = numbers[i+1:]
        subset_sum(remaining, target, partial + [n]) 
   

if __name__ == "__main__":
    subset_sum([3,9,8,4,5,7,10],15)

    #Outputs:
    #sum([3, 8, 4])=15
    #sum([3, 5, 7])=15
    #sum([8, 7])=15
    #sum([5, 10])=15

这种类型的算法在接下来的斯坦福大学抽象编程课程中有很好的解释-这个视频非常推荐来理解递归是如何产生解决方案的排列的。

Edit

上面作为一个生成器函数,使它更有用一点。需要Python 3.3+,因为yield来自。

def subset_sum(numbers, target, partial=[], partial_sum=0):
    if partial_sum == target:
        yield partial
    if partial_sum >= target:
        return
    for i, n in enumerate(numbers):
        remaining = numbers[i + 1:]
        yield from subset_sum(remaining, target, partial + [n], partial_sum + n)

下面是相同算法的Java版本:

package tmp;

import java.util.ArrayList;
import java.util.Arrays;

class SumSet {
    static void sum_up_recursive(ArrayList<Integer> numbers, int target, ArrayList<Integer> partial) {
       int s = 0;
       for (int x: partial) s += x;
       if (s == target)
            System.out.println("sum("+Arrays.toString(partial.toArray())+")="+target);
       if (s >= target)
            return;
       for(int i=0;i<numbers.size();i++) {
             ArrayList<Integer> remaining = new ArrayList<Integer>();
             int n = numbers.get(i);
             for (int j=i+1; j<numbers.size();j++) remaining.add(numbers.get(j));
             ArrayList<Integer> partial_rec = new ArrayList<Integer>(partial);
             partial_rec.add(n);
             sum_up_recursive(remaining,target,partial_rec);
       }
    }
    static void sum_up(ArrayList<Integer> numbers, int target) {
        sum_up_recursive(numbers,target,new ArrayList<Integer>());
    }
    public static void main(String args[]) {
        Integer[] numbers = {3,9,8,4,5,7,10};
        int target = 15;
        sum_up(new ArrayList<Integer>(Arrays.asList(numbers)),target);
    }
}

这是完全相同的启发式。我的Java有点生疏,但我认为很容易理解。

Java解决方案的c#转换(by @JeremyThompson)

public static void Main(string[] args)
{
    List<int> numbers = new List<int>() { 3, 9, 8, 4, 5, 7, 10 };
    int target = 15;
    sum_up(numbers, target);
}

private static void sum_up(List<int> numbers, int target)
{
    sum_up_recursive(numbers, target, new List<int>());
}

private static void sum_up_recursive(List<int> numbers, int target, List<int> partial)
{
    int s = 0;
    foreach (int x in partial) s += x;

    if (s == target)
        Console.WriteLine("sum(" + string.Join(",", partial.ToArray()) + ")=" + target);

    if (s >= target)
        return;

    for (int i = 0; i < numbers.Count; i++)
    {
        List<int> remaining = new List<int>();
        int n = numbers[i];
        for (int j = i + 1; j < numbers.Count; j++) remaining.Add(numbers[j]);

        List<int> partial_rec = new List<int>(partial);
        partial_rec.Add(n);
        sum_up_recursive(remaining, target, partial_rec);
    }
}

Ruby解决方案:(by @emaillenin)

def subset_sum(numbers, target, partial=[])
  s = partial.inject 0, :+
# check if the partial sum is equals to target

  puts "sum(#{partial})=#{target}" if s == target

  return if s >= target # if we reach the number why bother to continue

  (0..(numbers.length - 1)).each do |i|
    n = numbers[i]
    remaining = numbers.drop(i+1)
    subset_sum(remaining, target, partial + [n])
  end
end

subset_sum([3,9,8,4,5,7,10],15)

编辑:复杂性讨论

正如其他人提到的,这是一个np难题。它可以在O(2^n)的指数时间内求解,例如n=10,将有1024个可能的解。如果你要达到的目标是在一个较低的范围内,那么这个算法是有效的。例如:

Subset_sum([1,2,3,4,5,6,7,8,9,10],100000)生成1024个分支,因为目标永远无法过滤出可能的解。

另一方面,subset_sum([1,2,3,4,5,6,7,8,9,10],10)只生成175个分支,因为达到10的目标要过滤掉许多组合。

如果N和目标都是很大的数字,那么就应该得到近似的解。

c#版本的@msalvadores代码的答案

void Main()
{
    int[] numbers = {3,9,8,4,5,7,10};
    int target = 15;
    sum_up(new List<int>(numbers.ToList()),target);
}

static void sum_up_recursive(List<int> numbers, int target, List<int> part)
{
   int s = 0;
   foreach (int x in part)
   {
       s += x;
   }
   if (s == target)
   {
        Console.WriteLine("sum(" + string.Join(",", part.Select(n => n.ToString()).ToArray()) + ")=" + target);
   }
   if (s >= target)
   {
        return;
   }
   for (int i = 0;i < numbers.Count;i++)
   {
         var remaining = new List<int>();
         int n = numbers[i];
         for (int j = i + 1; j < numbers.Count;j++)
         {
             remaining.Add(numbers[j]);
         }
         var part_rec = new List<int>(part);
         part_rec.Add(n);
         sum_up_recursive(remaining,target,part_rec);
   }
}
static void sum_up(List<int> numbers, int target)
{
    sum_up_recursive(numbers,target,new List<int>());
}

我想我应该用这个问题的答案,但我不能,所以这是我的答案。它使用的是《计算机程序的结构和解释》中答案的修改版本。我认为这是一个更好的递归解,应该更能取悦纯粹主义者。

我的答案是用Scala(如果我的Scala很烂,我很抱歉,我刚刚开始学习)。findsumcombination的疯狂之处在于对递归的原始列表进行排序和惟一,以防止欺骗。

def findSumCombinations(target: Int, numbers: List[Int]): Int = {
  cc(target, numbers.distinct.sortWith(_ < _), List())
}

def cc(target: Int, numbers: List[Int], solution: List[Int]): Int = {
  if (target == 0) {println(solution); 1 }
  else if (target < 0 || numbers.length == 0) 0
  else 
    cc(target, numbers.tail, solution) 
    + cc(target - numbers.head, numbers, numbers.head :: solution)
}

使用它:

 > findSumCombinations(12345, List(1,5,22,15,0,..))
 * Prints a whole heap of lists that will sum to the target *

Excel VBA版本如下。我需要在VBA中实现这一点(不是我的偏好,不要评判我!),并使用本页上的答案作为方法。我上传以防其他人也需要VBA版本。

Option Explicit

Public Sub SumTarget()
    Dim numbers(0 To 6)  As Long
    Dim target As Long

    target = 15
    numbers(0) = 3: numbers(1) = 9: numbers(2) = 8: numbers(3) = 4: numbers(4) = 5
    numbers(5) = 7: numbers(6) = 10

    Call SumUpTarget(numbers, target)
End Sub

Public Sub SumUpTarget(numbers() As Long, target As Long)
    Dim part() As Long
    Call SumUpRecursive(numbers, target, part)
End Sub

Private Sub SumUpRecursive(numbers() As Long, target As Long, part() As Long)

    Dim s As Long, i As Long, j As Long, num As Long
    Dim remaining() As Long, partRec() As Long
    s = SumArray(part)

    If s = target Then Debug.Print "SUM ( " & ArrayToString(part) & " ) = " & target
    If s >= target Then Exit Sub

    If (Not Not numbers) <> 0 Then
        For i = 0 To UBound(numbers)
            Erase remaining()
            num = numbers(i)
            For j = i + 1 To UBound(numbers)
                AddToArray remaining, numbers(j)
            Next j
            Erase partRec()
            CopyArray partRec, part
            AddToArray partRec, num
            SumUpRecursive remaining, target, partRec
        Next i
    End If

End Sub

Private Function ArrayToString(x() As Long) As String
    Dim n As Long, result As String
    result = "{" & x(n)
    For n = LBound(x) + 1 To UBound(x)
        result = result & "," & x(n)
    Next n
    result = result & "}"
    ArrayToString = result
End Function

Private Function SumArray(x() As Long) As Long
    Dim n As Long
    SumArray = 0
    If (Not Not x) <> 0 Then
        For n = LBound(x) To UBound(x)
            SumArray = SumArray + x(n)
        Next n
    End If
End Function

Private Sub AddToArray(arr() As Long, x As Long)
    If (Not Not arr) <> 0 Then
        ReDim Preserve arr(0 To UBound(arr) + 1)
    Else
        ReDim Preserve arr(0 To 0)
    End If
    arr(UBound(arr)) = x
End Sub

Private Sub CopyArray(destination() As Long, source() As Long)
    Dim n As Long
    If (Not Not source) <> 0 Then
        For n = 0 To UBound(source)
                AddToArray destination, source(n)
        Next n
    End If
End Sub

输出(写入立即窗口)应该是:

SUM ( {3,8,4} ) = 15
SUM ( {3,5,7} ) = 15
SUM ( {8,7} ) = 15
SUM ( {5,10} ) = 15 

我将c#示例移植到Objective-c,并没有在响应中看到它:

//Usage
NSMutableArray* numberList = [[NSMutableArray alloc] init];
NSMutableArray* partial = [[NSMutableArray alloc] init];
int target = 16;
for( int i = 1; i<target; i++ )
{ [numberList addObject:@(i)]; }
[self findSums:numberList target:target part:partial];


//*******************************************************************
// Finds combinations of numbers that add up to target recursively
//*******************************************************************
-(void)findSums:(NSMutableArray*)numbers target:(int)target part:(NSMutableArray*)partial
{
    int s = 0;
    for (NSNumber* x in partial)
    { s += [x intValue]; }

    if (s == target)
    { NSLog(@"Sum[%@]", partial); }

    if (s >= target)
    { return; }

    for (int i = 0;i < [numbers count];i++ )
    {
        int n = [numbers[i] intValue];
        NSMutableArray* remaining = [[NSMutableArray alloc] init];
        for (int j = i + 1; j < [numbers count];j++)
        { [remaining addObject:@([numbers[j] intValue])]; }

        NSMutableArray* partRec = [[NSMutableArray alloc] initWithArray:partial];
        [partRec addObject:@(n)];
        [self findSums:remaining target:target part:partRec];
    }
}