你如何从给定的N个数字中测试所有可能的加法组合,使它们加起来得到给定的最终数字?

一个简单的例子:

要添加的数字集:N ={1,5,22,15,0,…} 期望结果:12345


当前回答

Javascript版本:

function subsetSum(numbers, target, partial) { var s, n, remaining; partial = partial || []; // sum partial s = partial.reduce(function (a, b) { return a + b; }, 0); // check if the partial sum is equals to target if (s === target) { console.log("%s=%s", partial.join("+"), target) } if (s >= target) { return; // if we reach the number why bother to continue } for (var i = 0; i < numbers.length; i++) { n = numbers[i]; remaining = numbers.slice(i + 1); subsetSum(remaining, target, partial.concat([n])); } } subsetSum([3,9,8,4,5,7,10],15); // output: // 3+8+4=15 // 3+5+7=15 // 8+7=15 // 5+10=15

其他回答

这也可以用来打印所有的答案

public void recur(int[] a, int n, int sum, int[] ans, int ind) {
    if (n < 0 && sum != 0)
        return;
    if (n < 0 && sum == 0) {
        print(ans, ind);
        return;
    }
    if (sum >= a[n]) {
        ans[ind] = a[n];
        recur(a, n - 1, sum - a[n], ans, ind + 1);
    }
    recur(a, n - 1, sum, ans, ind);
}

public void print(int[] a, int n) {
    for (int i = 0; i < n; i++)
        System.out.print(a[i] + " ");
    System.out.println();
}

时间复杂度是指数级的。2^n的阶

import java.util.*;

public class Main{

     int recursionDepth = 0;
     private int[][] memo;

     public static void main(String []args){
         int[] nums = new int[] {5,2,4,3,1};
         int N = nums.length;
         Main main =  new Main();
         main.memo = new int[N+1][N+1];
         main._findCombo(0, N-1,nums, 8, 0, new LinkedList() );
         System.out.println(main.recursionDepth);
     }


       private void _findCombo(
           int from,
           int to,
           int[] nums,
           int targetSum,
           int currentSum,
           LinkedList<Integer> list){

            if(memo[from][to] != 0) {
                currentSum = currentSum + memo[from][to];
            }

            if(currentSum > targetSum) {
                return;
            }

            if(currentSum ==  targetSum) {
                System.out.println("Found - " +list);
                return;
            }

            recursionDepth++;

           for(int i= from ; i <= to; i++){
               list.add(nums[i]);
               memo[from][i] = currentSum + nums[i];
               _findCombo(i+1, to,nums, targetSum, memo[from][i], list);
                list.removeLast();
           }

     }
}

下面是一个Java版本,它非常适合小N和非常大的目标和,当复杂度O(t*N)(动态解)大于指数算法时。我的版本在中间攻击中使用了一个meet,并进行了一些调整,以降低复杂度,从经典的naive O(n*2^n)降低到O(2^(n/2))。

如果你想在32到64个元素之间的集合中使用这种方法,你应该将表示step函数中当前子集的int改为long,尽管随着集合大小的增加,性能显然会急剧下降。如果你想对一个有奇数个元素的集合使用这个,你应该给这个集合加上一个0,使它成为偶数。

import java.util.ArrayList;
import java.util.List;

public class SubsetSumMiddleAttack {
    static final int target = 100000000;
    static final int[] set = new int[]{ ... };

    static List<Subset> evens = new ArrayList<>();
    static List<Subset> odds = new ArrayList<>();

    static int[][] split(int[] superSet) {
        int[][] ret = new int[2][superSet.length / 2]; 

        for (int i = 0; i < superSet.length; i++) ret[i % 2][i / 2] = superSet[i];

        return ret;
    }

    static void step(int[] superSet, List<Subset> accumulator, int subset, int sum, int counter) {
        accumulator.add(new Subset(subset, sum));
        if (counter != superSet.length) {
            step(superSet, accumulator, subset + (1 << counter), sum + superSet[counter], counter + 1);
            step(superSet, accumulator, subset, sum, counter + 1);
        }
    }

    static void printSubset(Subset e, Subset o) {
        String ret = "";
        for (int i = 0; i < 32; i++) {
            if (i % 2 == 0) {
                if ((1 & (e.subset >> (i / 2))) == 1) ret += " + " + set[i];
            }
            else {
                if ((1 & (o.subset >> (i / 2))) == 1) ret += " + " + set[i];
            }
        }
        if (ret.startsWith(" ")) ret = ret.substring(3) + " = " + (e.sum + o.sum);
        System.out.println(ret);
    }

    public static void main(String[] args) {
        int[][] superSets = split(set);

        step(superSets[0], evens, 0,0,0);
        step(superSets[1], odds, 0,0,0);

        for (Subset e : evens) {
            for (Subset o : odds) {
                if (e.sum + o.sum == target) printSubset(e, o);
            }
        }
    }
}

class Subset {
    int subset;
    int sum;

    Subset(int subset, int sum) {
        this.subset = subset;
        this.sum = sum;
    }
}

这是R中的一个解

subset_sum = function(numbers,target,partial=0){
  if(any(is.na(partial))) return()
  s = sum(partial)
  if(s == target) print(sprintf("sum(%s)=%s",paste(partial[-1],collapse="+"),target))
  if(s > target) return()
  for( i in seq_along(numbers)){
    n = numbers[i]
    remaining = numbers[(i+1):length(numbers)]
    subset_sum(remaining,target,c(partial,n))
  }
}

Perl版本(前导答案):

use strict;

sub subset_sum {
  my ($numbers, $target, $result, $sum) = @_;

  print 'sum('.join(',', @$result).") = $target\n" if $sum == $target;
  return if $sum >= $target;

  subset_sum([@$numbers[$_ + 1 .. $#$numbers]], $target, 
             [@{$result||[]}, $numbers->[$_]], $sum + $numbers->[$_])
    for (0 .. $#$numbers);
}

subset_sum([3,9,8,4,5,7,10,6], 15);

结果:

sum(3,8,4) = 15
sum(3,5,7) = 15
sum(9,6) = 15
sum(8,7) = 15
sum(4,5,6) = 15
sum(5,10) = 15

Javascript版本:

const subsetSum = (numbers, target, partial = [], sum = 0) => { If (sum < target) 数字。forEach((num, i) => subsetSum(数字。Slice (i + 1), target, partial.concat([num]), sum + num)); Else if (sum == target) console.log(的总和(% s) = % s, partial.join(),目标); } subsetSum([3、9、8、4、5、7、10、6],15);

Javascript一行实际返回结果(而不是打印它):

const subsetSum = (n, t, p = [], s = 0, r = []) = > (s < t ? n.forEach ((l i) = > subsetSum (n.slice (i + 1), t,[……p、l], s + l r)): s = = t ? r.push (p): 0, r); console.log (subsetSum([3、9、8、4、5、7、10、6],15));

我最喜欢的是带有回调的一行语句:

const subsetSum = (n, t,辛西娅·布雷齐尔,p =黑铝,s = 0) = > s & lt; t ? n.forEach ((l, i) = > subsetSum (n.slice (i + 1)、t、辛西娅·布雷齐尔,黑... p, l铝,s + l)): s = = t ?辛西娅·布雷齐尔(p): 0; 子集([3,9,8,4,5,7,10,6],15,console.log);