你如何从给定的N个数字中测试所有可能的加法组合,使它们加起来得到给定的最终数字?
一个简单的例子:
要添加的数字集:N ={1,5,22,15,0,…} 期望结果:12345
你如何从给定的N个数字中测试所有可能的加法组合,使它们加起来得到给定的最终数字?
一个简单的例子:
要添加的数字集:N ={1,5,22,15,0,…} 期望结果:12345
当前回答
Java解决方案的Swift 3转换(by @JeremyThompson)
protocol _IntType { }
extension Int: _IntType {}
extension Array where Element: _IntType {
func subsets(to: Int) -> [[Element]]? {
func sum_up_recursive(_ numbers: [Element], _ target: Int, _ partial: [Element], _ solution: inout [[Element]]) {
var sum: Int = 0
for x in partial {
sum += x as! Int
}
if sum == target {
solution.append(partial)
}
guard sum < target else {
return
}
for i in stride(from: 0, to: numbers.count, by: 1) {
var remaining = [Element]()
for j in stride(from: i + 1, to: numbers.count, by: 1) {
remaining.append(numbers[j])
}
var partial_rec = [Element](partial)
partial_rec.append(numbers[i])
sum_up_recursive(remaining, target, partial_rec, &solution)
}
}
var solutions = [[Element]]()
sum_up_recursive(self, to, [Element](), &solutions)
return solutions.count > 0 ? solutions : nil
}
}
用法:
let numbers = [3, 9, 8, 4, 5, 7, 10]
if let solution = numbers.subsets(to: 15) {
print(solution) // output: [[3, 8, 4], [3, 5, 7], [8, 7], [5, 10]]
} else {
print("not possible")
}
其他回答
这类似于硬币更换问题
public class CoinCount
{
public static void main(String[] args)
{
int[] coins={1,4,6,2,3,5};
int count=0;
for (int i=0;i<coins.length;i++)
{
count=count+Count(9,coins,i,0);
}
System.out.println(count);
}
public static int Count(int Sum,int[] coins,int index,int curSum)
{
int count=0;
if (index>=coins.length)
return 0;
int sumNow=curSum+coins[index];
if (sumNow>Sum)
return 0;
if (sumNow==Sum)
return 1;
for (int i= index+1;i<coins.length;i++)
count+=Count(Sum,coins,i,sumNow);
return count;
}
}
我将c#示例移植到Objective-c,并没有在响应中看到它:
//Usage
NSMutableArray* numberList = [[NSMutableArray alloc] init];
NSMutableArray* partial = [[NSMutableArray alloc] init];
int target = 16;
for( int i = 1; i<target; i++ )
{ [numberList addObject:@(i)]; }
[self findSums:numberList target:target part:partial];
//*******************************************************************
// Finds combinations of numbers that add up to target recursively
//*******************************************************************
-(void)findSums:(NSMutableArray*)numbers target:(int)target part:(NSMutableArray*)partial
{
int s = 0;
for (NSNumber* x in partial)
{ s += [x intValue]; }
if (s == target)
{ NSLog(@"Sum[%@]", partial); }
if (s >= target)
{ return; }
for (int i = 0;i < [numbers count];i++ )
{
int n = [numbers[i] intValue];
NSMutableArray* remaining = [[NSMutableArray alloc] init];
for (int j = i + 1; j < [numbers count];j++)
{ [remaining addObject:@([numbers[j] intValue])]; }
NSMutableArray* partRec = [[NSMutableArray alloc] initWithArray:partial];
[partRec addObject:@(n)];
[self findSums:remaining target:target part:partRec];
}
}
建议回答:
下面是一个使用es2015生成器的解决方案:
function* subsetSum(numbers, target, partial = [], partialSum = 0) {
if(partialSum === target) yield partial
if(partialSum >= target) return
for(let i = 0; i < numbers.length; i++){
const remaining = numbers.slice(i + 1)
, n = numbers[i]
yield* subsetSum(remaining, target, [...partial, n], partialSum + n)
}
}
使用生成器实际上非常有用,因为它允许您在找到有效子集时立即暂停脚本执行。这与没有生成器(即缺乏状态)的解决方案形成对比,后者必须遍历每个数字子集
Thank you.. ephemient
我已经将上述逻辑从python转换为php..
<?php
$data = array(array(2,3,5,10,15),array(4,6,23,15,12),array(23,34,12,1,5));
$maxsum = 25;
print_r(bestsum($data,$maxsum)); //function call
function bestsum($data,$maxsum)
{
$res = array_fill(0, $maxsum + 1, '0');
$res[0] = array(); //base case
foreach($data as $group)
{
$new_res = $res; //copy res
foreach($group as $ele)
{
for($i=0;$i<($maxsum-$ele+1);$i++)
{
if($res[$i] != 0)
{
$ele_index = $i+$ele;
$new_res[$ele_index] = $res[$i];
$new_res[$ele_index][] = $ele;
}
}
}
$res = $new_res;
}
for($i=$maxsum;$i>0;$i--)
{
if($res[$i]!=0)
{
return $res[$i];
break;
}
}
return array();
}
?>
这个问题可以通过所有可能的和的递归组合来解决,过滤掉那些达到目标的和。下面是Python中的算法:
def subset_sum(numbers, target, partial=[]):
s = sum(partial)
# check if the partial sum is equals to target
if s == target:
print "sum(%s)=%s" % (partial, target)
if s >= target:
return # if we reach the number why bother to continue
for i in range(len(numbers)):
n = numbers[i]
remaining = numbers[i+1:]
subset_sum(remaining, target, partial + [n])
if __name__ == "__main__":
subset_sum([3,9,8,4,5,7,10],15)
#Outputs:
#sum([3, 8, 4])=15
#sum([3, 5, 7])=15
#sum([8, 7])=15
#sum([5, 10])=15
这种类型的算法在接下来的斯坦福大学抽象编程课程中有很好的解释-这个视频非常推荐来理解递归是如何产生解决方案的排列的。
Edit
上面作为一个生成器函数,使它更有用一点。需要Python 3.3+,因为yield来自。
def subset_sum(numbers, target, partial=[], partial_sum=0):
if partial_sum == target:
yield partial
if partial_sum >= target:
return
for i, n in enumerate(numbers):
remaining = numbers[i + 1:]
yield from subset_sum(remaining, target, partial + [n], partial_sum + n)
下面是相同算法的Java版本:
package tmp;
import java.util.ArrayList;
import java.util.Arrays;
class SumSet {
static void sum_up_recursive(ArrayList<Integer> numbers, int target, ArrayList<Integer> partial) {
int s = 0;
for (int x: partial) s += x;
if (s == target)
System.out.println("sum("+Arrays.toString(partial.toArray())+")="+target);
if (s >= target)
return;
for(int i=0;i<numbers.size();i++) {
ArrayList<Integer> remaining = new ArrayList<Integer>();
int n = numbers.get(i);
for (int j=i+1; j<numbers.size();j++) remaining.add(numbers.get(j));
ArrayList<Integer> partial_rec = new ArrayList<Integer>(partial);
partial_rec.add(n);
sum_up_recursive(remaining,target,partial_rec);
}
}
static void sum_up(ArrayList<Integer> numbers, int target) {
sum_up_recursive(numbers,target,new ArrayList<Integer>());
}
public static void main(String args[]) {
Integer[] numbers = {3,9,8,4,5,7,10};
int target = 15;
sum_up(new ArrayList<Integer>(Arrays.asList(numbers)),target);
}
}
这是完全相同的启发式。我的Java有点生疏,但我认为很容易理解。
Java解决方案的c#转换(by @JeremyThompson)
public static void Main(string[] args)
{
List<int> numbers = new List<int>() { 3, 9, 8, 4, 5, 7, 10 };
int target = 15;
sum_up(numbers, target);
}
private static void sum_up(List<int> numbers, int target)
{
sum_up_recursive(numbers, target, new List<int>());
}
private static void sum_up_recursive(List<int> numbers, int target, List<int> partial)
{
int s = 0;
foreach (int x in partial) s += x;
if (s == target)
Console.WriteLine("sum(" + string.Join(",", partial.ToArray()) + ")=" + target);
if (s >= target)
return;
for (int i = 0; i < numbers.Count; i++)
{
List<int> remaining = new List<int>();
int n = numbers[i];
for (int j = i + 1; j < numbers.Count; j++) remaining.Add(numbers[j]);
List<int> partial_rec = new List<int>(partial);
partial_rec.Add(n);
sum_up_recursive(remaining, target, partial_rec);
}
}
Ruby解决方案:(by @emaillenin)
def subset_sum(numbers, target, partial=[])
s = partial.inject 0, :+
# check if the partial sum is equals to target
puts "sum(#{partial})=#{target}" if s == target
return if s >= target # if we reach the number why bother to continue
(0..(numbers.length - 1)).each do |i|
n = numbers[i]
remaining = numbers.drop(i+1)
subset_sum(remaining, target, partial + [n])
end
end
subset_sum([3,9,8,4,5,7,10],15)
编辑:复杂性讨论
正如其他人提到的,这是一个np难题。它可以在O(2^n)的指数时间内求解,例如n=10,将有1024个可能的解。如果你要达到的目标是在一个较低的范围内,那么这个算法是有效的。例如:
Subset_sum([1,2,3,4,5,6,7,8,9,10],100000)生成1024个分支,因为目标永远无法过滤出可能的解。
另一方面,subset_sum([1,2,3,4,5,6,7,8,9,10],10)只生成175个分支,因为达到10的目标要过滤掉许多组合。
如果N和目标都是很大的数字,那么就应该得到近似的解。