在Python解释器中的这些指令之后,你会看到一个带有图形的窗口:
from matplotlib.pyplot import *
plot([1,2,3])
show()
# other code
不幸的是,我不知道如何在程序进行进一步计算时继续交互式地探索show()创建的图形。
这可能吗?有时计算很长,如果在检查中间结果时进行计算将会有所帮助。
在Python解释器中的这些指令之后,你会看到一个带有图形的窗口:
from matplotlib.pyplot import *
plot([1,2,3])
show()
# other code
不幸的是,我不知道如何在程序进行进一步计算时继续交互式地探索show()创建的图形。
这可能吗?有时计算很长,如果在检查中间结果时进行计算将会有所帮助。
当前回答
重要提示:只是为了澄清一些事情。我假设命令在.py脚本中,脚本是使用python script.py从控制台调用的。
对我来说,一个简单的方法是:
使用block = False在里面显示:plt。show(block = False) 在.py脚本的末尾使用另一个show()。
script.py文件示例:
plt.imshow(*something*)
plt.colorbar()
plt.xlabel("true ")
plt.ylabel("predicted ")
plt.title(" the matrix")
# Add block = False
plt.show(block = False)
################################
# OTHER CALCULATIONS AND CODE HERE ! ! !
################################
# the next command is the last line of my script
plt.show()
其他回答
plt.figure(1)
plt.imshow(your_first_image)
plt.figure(2)
plt.imshow(your_second_image)
plt.show(block=False) # That's important
raw_input("Press ENTER to exist") # Useful when you run your Python script from the terminal and you want to hold the running to see your figures until you press Enter
在我的系统上,show()没有阻塞,尽管我希望脚本在继续之前等待用户与图形交互(并使用'pick_event'回调来收集数据)。
为了阻止执行直到绘图窗口关闭,我使用了以下方法:
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.plot(x,y)
# set processing to continue when window closed
def onclose(event):
fig.canvas.stop_event_loop()
fig.canvas.mpl_connect('close_event', onclose)
fig.show() # this call does not block on my system
fig.canvas.start_event_loop_default() # block here until window closed
# continue with further processing, perhaps using result from callbacks
但是请注意,canvas.start_event_loop_default()产生了以下警告:
C:\Python26\lib\site-packages\matplotlib\backend_bases.py:2051: DeprecationWarning: Using default event loop until function specific to this GUI is implemented
warnings.warn(str,DeprecationWarning)
尽管脚本仍然在运行。
如果你在控制台工作,即IPython,你可以使用plt.show(block=False),正如在其他答案中指出的那样。但如果你很懒,你可以输入:
plt.show(0)
这是一样的。
使用关键字'block'来覆盖阻塞行为,例如:
from matplotlib.pyplot import show, plot
plot(1)
show(block=False)
# your code
继续您的代码。
在我看来,这个帖子中的答案提供的方法并不适用于每个系统和更复杂的情况,如动画。我建议在下面的帖子中看看MiKTeX的答案,在那里找到了一个健壮的方法: 如何等待matplotlib动画结束?