在Python解释器中的这些指令之后,你会看到一个带有图形的窗口:
from matplotlib.pyplot import *
plot([1,2,3])
show()
# other code
不幸的是,我不知道如何在程序进行进一步计算时继续交互式地探索show()创建的图形。
这可能吗?有时计算很长,如果在检查中间结果时进行计算将会有所帮助。
在Python解释器中的这些指令之后,你会看到一个带有图形的窗口:
from matplotlib.pyplot import *
plot([1,2,3])
show()
# other code
不幸的是,我不知道如何在程序进行进一步计算时继续交互式地探索show()创建的图形。
这可能吗?有时计算很长,如果在检查中间结果时进行计算将会有所帮助。
当前回答
重要提示:只是为了澄清一些事情。我假设命令在.py脚本中,脚本是使用python script.py从控制台调用的。
对我来说,一个简单的方法是:
使用block = False在里面显示:plt。show(block = False) 在.py脚本的末尾使用另一个show()。
script.py文件示例:
plt.imshow(*something*)
plt.colorbar()
plt.xlabel("true ")
plt.ylabel("predicted ")
plt.title(" the matrix")
# Add block = False
plt.show(block = False)
################################
# OTHER CALCULATIONS AND CODE HERE ! ! !
################################
# the next command is the last line of my script
plt.show()
其他回答
嗯,我在搞清楚非阻塞命令方面遇到了很大的困难……但最后,我成功地重做了“Cookbook/Matplotlib/Animations -动画选定的绘图元素”的例子,所以它可以在Ubuntu 10.04的Python 2.6.5上与线程一起工作(并通过全局变量或多进程管道在线程之间传递数据)。
脚本可以在这里找到:Animating_selected_plot_elements-thread.py -否则粘贴在下面(注释更少)以供参考:
import sys
import gtk, gobject
import matplotlib
matplotlib.use('GTKAgg')
import pylab as p
import numpy as nx
import time
import threading
ax = p.subplot(111)
canvas = ax.figure.canvas
# for profiling
tstart = time.time()
# create the initial line
x = nx.arange(0,2*nx.pi,0.01)
line, = ax.plot(x, nx.sin(x), animated=True)
# save the clean slate background -- everything but the animated line
# is drawn and saved in the pixel buffer background
background = canvas.copy_from_bbox(ax.bbox)
# just a plain global var to pass data (from main, to plot update thread)
global mypass
# http://docs.python.org/library/multiprocessing.html#pipes-and-queues
from multiprocessing import Pipe
global pipe1main, pipe1upd
pipe1main, pipe1upd = Pipe()
# the kind of processing we might want to do in a main() function,
# will now be done in a "main thread" - so it can run in
# parallel with gobject.idle_add(update_line)
def threadMainTest():
global mypass
global runthread
global pipe1main
print "tt"
interncount = 1
while runthread:
mypass += 1
if mypass > 100: # start "speeding up" animation, only after 100 counts have passed
interncount *= 1.03
pipe1main.send(interncount)
time.sleep(0.01)
return
# main plot / GUI update
def update_line(*args):
global mypass
global t0
global runthread
global pipe1upd
if not runthread:
return False
if pipe1upd.poll(): # check first if there is anything to receive
myinterncount = pipe1upd.recv()
update_line.cnt = mypass
# restore the clean slate background
canvas.restore_region(background)
# update the data
line.set_ydata(nx.sin(x+(update_line.cnt+myinterncount)/10.0))
# just draw the animated artist
ax.draw_artist(line)
# just redraw the axes rectangle
canvas.blit(ax.bbox)
if update_line.cnt>=500:
# print the timing info and quit
print 'FPS:' , update_line.cnt/(time.time()-tstart)
runthread=0
t0.join(1)
print "exiting"
sys.exit(0)
return True
global runthread
update_line.cnt = 0
mypass = 0
runthread=1
gobject.idle_add(update_line)
global t0
t0 = threading.Thread(target=threadMainTest)
t0.start()
# start the graphics update thread
p.show()
print "out" # will never print - show() blocks indefinitely!
希望这能帮助到一些人, 干杯!
重要提示:只是为了澄清一些事情。我假设命令在.py脚本中,脚本是使用python script.py从控制台调用的。
对我来说,一个简单的方法是:
使用block = False在里面显示:plt。show(block = False) 在.py脚本的末尾使用另一个show()。
script.py文件示例:
plt.imshow(*something*)
plt.colorbar()
plt.xlabel("true ")
plt.ylabel("predicted ")
plt.title(" the matrix")
# Add block = False
plt.show(block = False)
################################
# OTHER CALCULATIONS AND CODE HERE ! ! !
################################
# the next command is the last line of my script
plt.show()
在我的例子中,我希望在计算窗口时弹出几个窗口。作为参考,方法如下:
from matplotlib.pyplot import draw, figure, show
f1, f2 = figure(), figure()
af1 = f1.add_subplot(111)
af2 = f2.add_subplot(111)
af1.plot([1,2,3])
af2.plot([6,5,4])
draw()
print 'continuing computation'
show()
一个非常有用的matplotlib的OO接口指南。
我还希望我的图显示运行其余的代码(然后继续显示),即使出现错误(我有时使用图进行调试)。我编写了这个小代码,让这个with语句中的任何plot都像这样。
这可能有点太非标准了,不适合用于生产代码。这段代码中可能有很多隐藏的“陷阱”。
from contextlib import contextmanager
@contextmanager
def keep_plots_open(keep_show_open_on_exit=True, even_when_error=True):
'''
To continue excecuting code when plt.show() is called
and keep the plot on displaying before this contex manager exits
(even if an error caused the exit).
'''
import matplotlib.pyplot
show_original = matplotlib.pyplot.show
def show_replacement(*args, **kwargs):
kwargs['block'] = False
show_original(*args, **kwargs)
matplotlib.pyplot.show = show_replacement
pylab_exists = True
try:
import pylab
except ImportError:
pylab_exists = False
if pylab_exists:
pylab.show = show_replacement
try:
yield
except Exception, err:
if keep_show_open_on_exit and even_when_error:
print "*********************************************"
print "Error early edition while waiting for show():"
print "*********************************************"
import traceback
print traceback.format_exc()
show_original()
print "*********************************************"
raise
finally:
matplotlib.pyplot.show = show_original
if pylab_exists:
pylab.show = show_original
if keep_show_open_on_exit:
show_original()
# ***********************
# Running example
# ***********************
import pylab as pl
import time
if __name__ == '__main__':
with keep_plots_open():
pl.figure('a')
pl.plot([1,2,3], [4,5,6])
pl.plot([3,2,1], [4,5,6])
pl.show()
pl.figure('b')
pl.plot([1,2,3], [4,5,6])
pl.show()
time.sleep(1)
print '...'
time.sleep(1)
print '...'
time.sleep(1)
print '...'
this_will_surely_cause_an_error
如果/当我实现了一个适当的“保持图打开(即使发生错误)并允许显示新的图”,我希望脚本在没有用户干扰的情况下正确退出(用于批处理执行)。
我可能会使用超时问题“脚本结束!”\nPress p如果你想要绘图输出暂停(你有5秒):" from https://stackoverflow.com/questions/26704840/corner-cases-for-my-wait-for-user-input-interruption-implementation。
使用plt.show(block=False),并在脚本的末尾调用plt.show()。
这将确保脚本完成时窗口不会关闭。