在Python解释器中的这些指令之后,你会看到一个带有图形的窗口:
from matplotlib.pyplot import *
plot([1,2,3])
show()
# other code
不幸的是,我不知道如何在程序进行进一步计算时继续交互式地探索show()创建的图形。
这可能吗?有时计算很长,如果在检查中间结果时进行计算将会有所帮助。
在Python解释器中的这些指令之后,你会看到一个带有图形的窗口:
from matplotlib.pyplot import *
plot([1,2,3])
show()
# other code
不幸的是,我不知道如何在程序进行进一步计算时继续交互式地探索show()创建的图形。
这可能吗?有时计算很长,如果在检查中间结果时进行计算将会有所帮助。
当前回答
plt.figure(1)
plt.imshow(your_first_image)
plt.figure(2)
plt.imshow(your_second_image)
plt.show(block=False) # That's important
raw_input("Press ENTER to exist") # Useful when you run your Python script from the terminal and you want to hold the running to see your figures until you press Enter
其他回答
使用关键字'block'来覆盖阻塞行为,例如:
from matplotlib.pyplot import show, plot
plot(1)
show(block=False)
# your code
继续您的代码。
plt.figure(1)
plt.imshow(your_first_image)
plt.figure(2)
plt.imshow(your_second_image)
plt.show(block=False) # That's important
raw_input("Press ENTER to exist") # Useful when you run your Python script from the terminal and you want to hold the running to see your figures until you press Enter
在我的系统上,show()没有阻塞,尽管我希望脚本在继续之前等待用户与图形交互(并使用'pick_event'回调来收集数据)。
为了阻止执行直到绘图窗口关闭,我使用了以下方法:
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.plot(x,y)
# set processing to continue when window closed
def onclose(event):
fig.canvas.stop_event_loop()
fig.canvas.mpl_connect('close_event', onclose)
fig.show() # this call does not block on my system
fig.canvas.start_event_loop_default() # block here until window closed
# continue with further processing, perhaps using result from callbacks
但是请注意,canvas.start_event_loop_default()产生了以下警告:
C:\Python26\lib\site-packages\matplotlib\backend_bases.py:2051: DeprecationWarning: Using default event loop until function specific to this GUI is implemented
warnings.warn(str,DeprecationWarning)
尽管脚本仍然在运行。
在许多情况下,将图像保存为硬盘上的.png文件会更方便。原因如下:
优点:
在这个过程中,你可以随时打开、查看和关闭它。当应用程序运行较长时间时,这尤其方便 时间。 什么都不会弹出,你也不会被迫打开窗户。这在处理许多数字时特别方便。 您的图像可用于以后的参考,并且在关闭图形窗口时不会丢失。
缺点:
我唯一能想到的是,你将不得不去查找文件夹,并打开自己的图像。
下面是我找到的最简单的解决方案(线程阻塞代码)
plt.show(block=False) # this avoids blocking your thread
plt.pause(1) # comment this if you do not want a time delay
# do more stuff
plt.show(block=True) # this prevents the window from closing on you