在Python解释器中的这些指令之后,你会看到一个带有图形的窗口:
from matplotlib.pyplot import *
plot([1,2,3])
show()
# other code
不幸的是,我不知道如何在程序进行进一步计算时继续交互式地探索show()创建的图形。
这可能吗?有时计算很长,如果在检查中间结果时进行计算将会有所帮助。
在Python解释器中的这些指令之后,你会看到一个带有图形的窗口:
from matplotlib.pyplot import *
plot([1,2,3])
show()
# other code
不幸的是,我不知道如何在程序进行进一步计算时继续交互式地探索show()创建的图形。
这可能吗?有时计算很长,如果在检查中间结果时进行计算将会有所帮助。
当前回答
在我的系统上,show()没有阻塞,尽管我希望脚本在继续之前等待用户与图形交互(并使用'pick_event'回调来收集数据)。
为了阻止执行直到绘图窗口关闭,我使用了以下方法:
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.plot(x,y)
# set processing to continue when window closed
def onclose(event):
fig.canvas.stop_event_loop()
fig.canvas.mpl_connect('close_event', onclose)
fig.show() # this call does not block on my system
fig.canvas.start_event_loop_default() # block here until window closed
# continue with further processing, perhaps using result from callbacks
但是请注意,canvas.start_event_loop_default()产生了以下警告:
C:\Python26\lib\site-packages\matplotlib\backend_bases.py:2051: DeprecationWarning: Using default event loop until function specific to this GUI is implemented
warnings.warn(str,DeprecationWarning)
尽管脚本仍然在运行。
其他回答
在我的例子中,我希望在计算窗口时弹出几个窗口。作为参考,方法如下:
from matplotlib.pyplot import draw, figure, show
f1, f2 = figure(), figure()
af1 = f1.add_subplot(111)
af2 = f2.add_subplot(111)
af1.plot([1,2,3])
af2.plot([6,5,4])
draw()
print 'continuing computation'
show()
一个非常有用的matplotlib的OO接口指南。
最好总是检查您正在使用的库是否支持以非阻塞的方式使用。
但是如果你想要一个更通用的解决方案,或者如果没有其他方法,你可以通过使用python中包含的多处理模块来运行任何在分离进程中阻塞的东西。计算将继续:
from multiprocessing import Process
from matplotlib.pyplot import plot, show
def plot_graph(*args):
for data in args:
plot(data)
show()
p = Process(target=plot_graph, args=([1, 2, 3],))
p.start()
print 'yay'
print 'computation continues...'
print 'that rocks.'
print 'Now lets wait for the graph be closed to continue...:'
p.join()
这有启动新进程的开销,而且在复杂的场景下有时更难调试,因此我更喜欢其他解决方案(使用matplotlib的非阻塞API调用)
Try
import matplotlib.pyplot as plt
plt.plot([1,2,3])
plt.show(block=False)
# other code
# [...]
# Put
plt.show()
# at the very end of your script to make sure Python doesn't bail out
# before you finished examining.
show()文档说:
在非交互模式下,显示所有图形并阻塞直到图形关闭;在交互模式下,除非在从非交互模式切换到交互模式之前创建了图形,否则没有效果(不推荐)。在这种情况下,它会显示数字,但不会阻塞。 单个实验关键字参数block可以被设置为True或False以覆盖上面描述的阻塞行为。
虽然没有直接回答OPs的请求,但我发布了这个变通方法,因为它可能会帮助一些人在这种情况下:
我用pyinstaller创建了一个.exe,因为我不能在我需要生成图形的地方安装python,所以我需要python脚本来生成图形,将其保存为.png,关闭它并继续下一个,在循环中实现为几个图形或使用一个函数。
为此,我使用:
import matplotlib.pyplot as plt
#code generating the plot in a loop or function
#saving the plot
plt.savefig(var+'_plot.png',bbox_inches='tight', dpi=250)
#you can allways reopen the plot using
os.system(var+'_plot.png') # unfortunately .png allows no interaction.
#the following avoids plot blocking the execution while in non-interactive mode
plt.show(block=False)
#and the following closes the plot while next iteration will generate new instance.
plt.close()
其中“var”标识循环中的情节,因此它不会被覆盖。
我所发现的最佳解决方案是,程序不会等待您关闭图形,并将所有的图放在一起,以便您可以并排检查它们,这是在最后显示所有的图。 但是通过这种方式,您不能在程序运行时检查图。
# stuff
numFig = 1
plt.figure(numFig)
numFig += 1
plt.plot(x1, y1)
# other stuff
plt.figure(numFig)
numFig += 1
plt.plot(x2, y2)
# more stuff
plt.show()