在Python解释器中的这些指令之后,你会看到一个带有图形的窗口:
from matplotlib.pyplot import *
plot([1,2,3])
show()
# other code
不幸的是,我不知道如何在程序进行进一步计算时继续交互式地探索show()创建的图形。
这可能吗?有时计算很长,如果在检查中间结果时进行计算将会有所帮助。
在Python解释器中的这些指令之后,你会看到一个带有图形的窗口:
from matplotlib.pyplot import *
plot([1,2,3])
show()
# other code
不幸的是,我不知道如何在程序进行进一步计算时继续交互式地探索show()创建的图形。
这可能吗?有时计算很长,如果在检查中间结果时进行计算将会有所帮助。
当前回答
如果你在控制台工作,即IPython,你可以使用plt.show(block=False),正如在其他答案中指出的那样。但如果你很懒,你可以输入:
plt.show(0)
这是一样的。
其他回答
嗯,我在搞清楚非阻塞命令方面遇到了很大的困难……但最后,我成功地重做了“Cookbook/Matplotlib/Animations -动画选定的绘图元素”的例子,所以它可以在Ubuntu 10.04的Python 2.6.5上与线程一起工作(并通过全局变量或多进程管道在线程之间传递数据)。
脚本可以在这里找到:Animating_selected_plot_elements-thread.py -否则粘贴在下面(注释更少)以供参考:
import sys
import gtk, gobject
import matplotlib
matplotlib.use('GTKAgg')
import pylab as p
import numpy as nx
import time
import threading
ax = p.subplot(111)
canvas = ax.figure.canvas
# for profiling
tstart = time.time()
# create the initial line
x = nx.arange(0,2*nx.pi,0.01)
line, = ax.plot(x, nx.sin(x), animated=True)
# save the clean slate background -- everything but the animated line
# is drawn and saved in the pixel buffer background
background = canvas.copy_from_bbox(ax.bbox)
# just a plain global var to pass data (from main, to plot update thread)
global mypass
# http://docs.python.org/library/multiprocessing.html#pipes-and-queues
from multiprocessing import Pipe
global pipe1main, pipe1upd
pipe1main, pipe1upd = Pipe()
# the kind of processing we might want to do in a main() function,
# will now be done in a "main thread" - so it can run in
# parallel with gobject.idle_add(update_line)
def threadMainTest():
global mypass
global runthread
global pipe1main
print "tt"
interncount = 1
while runthread:
mypass += 1
if mypass > 100: # start "speeding up" animation, only after 100 counts have passed
interncount *= 1.03
pipe1main.send(interncount)
time.sleep(0.01)
return
# main plot / GUI update
def update_line(*args):
global mypass
global t0
global runthread
global pipe1upd
if not runthread:
return False
if pipe1upd.poll(): # check first if there is anything to receive
myinterncount = pipe1upd.recv()
update_line.cnt = mypass
# restore the clean slate background
canvas.restore_region(background)
# update the data
line.set_ydata(nx.sin(x+(update_line.cnt+myinterncount)/10.0))
# just draw the animated artist
ax.draw_artist(line)
# just redraw the axes rectangle
canvas.blit(ax.bbox)
if update_line.cnt>=500:
# print the timing info and quit
print 'FPS:' , update_line.cnt/(time.time()-tstart)
runthread=0
t0.join(1)
print "exiting"
sys.exit(0)
return True
global runthread
update_line.cnt = 0
mypass = 0
runthread=1
gobject.idle_add(update_line)
global t0
t0 = threading.Thread(target=threadMainTest)
t0.start()
# start the graphics update thread
p.show()
print "out" # will never print - show() blocks indefinitely!
希望这能帮助到一些人, 干杯!
重要提示:只是为了澄清一些事情。我假设命令在.py脚本中,脚本是使用python script.py从控制台调用的。
对我来说,一个简单的方法是:
使用block = False在里面显示:plt。show(block = False) 在.py脚本的末尾使用另一个show()。
script.py文件示例:
plt.imshow(*something*)
plt.colorbar()
plt.xlabel("true ")
plt.ylabel("predicted ")
plt.title(" the matrix")
# Add block = False
plt.show(block = False)
################################
# OTHER CALCULATIONS AND CODE HERE ! ! !
################################
# the next command is the last line of my script
plt.show()
Try
import matplotlib.pyplot as plt
plt.plot([1,2,3])
plt.show(block=False)
# other code
# [...]
# Put
plt.show()
# at the very end of your script to make sure Python doesn't bail out
# before you finished examining.
show()文档说:
在非交互模式下,显示所有图形并阻塞直到图形关闭;在交互模式下,除非在从非交互模式切换到交互模式之前创建了图形,否则没有效果(不推荐)。在这种情况下,它会显示数字,但不会阻塞。 单个实验关键字参数block可以被设置为True或False以覆盖上面描述的阻塞行为。
我所发现的最佳解决方案是,程序不会等待您关闭图形,并将所有的图放在一起,以便您可以并排检查它们,这是在最后显示所有的图。 但是通过这种方式,您不能在程序运行时检查图。
# stuff
numFig = 1
plt.figure(numFig)
numFig += 1
plt.plot(x1, y1)
# other stuff
plt.figure(numFig)
numFig += 1
plt.plot(x2, y2)
# more stuff
plt.show()
在我看来,这个帖子中的答案提供的方法并不适用于每个系统和更复杂的情况,如动画。我建议在下面的帖子中看看MiKTeX的答案,在那里找到了一个健壮的方法: 如何等待matplotlib动画结束?