在Python解释器中的这些指令之后,你会看到一个带有图形的窗口:

from matplotlib.pyplot import *
plot([1,2,3])
show()
# other code

不幸的是,我不知道如何在程序进行进一步计算时继续交互式地探索show()创建的图形。

这可能吗?有时计算很长,如果在检查中间结果时进行计算将会有所帮助。


当前回答

我还必须在我的代码中添加plt.pause(0.001),以真正使它在for循环中工作(否则它只会显示第一个和最后一个plot):

import matplotlib.pyplot as plt

plt.scatter([0], [1])
plt.draw()
plt.show(block=False)

for i in range(10):
    plt.scatter([i], [i+1])
    plt.draw()
    plt.pause(0.001)

其他回答

如果你想打开多个图形,同时保持它们全部打开,这段代码适合我:

show(block=False)
draw()

我还必须在我的代码中添加plt.pause(0.001),以真正使它在for循环中工作(否则它只会显示第一个和最后一个plot):

import matplotlib.pyplot as plt

plt.scatter([0], [1])
plt.draw()
plt.show(block=False)

for i in range(10):
    plt.scatter([i], [i+1])
    plt.draw()
    plt.pause(0.001)

OP询问分离matplotlib图。大多数回答假设从python解释器中执行命令。这里给出的用例是我对在终端(例如bash)中测试代码的偏好,在终端中运行file.py,并且您希望出现绘图,但python脚本完成并返回命令提示符。

这个独立文件使用多处理启动一个单独的进程,用matplotlib绘制数据。主线程使用本文中提到的os._exit(1)退出。os._exit()强制main退出,但在plot窗口关闭之前,matplotlib子进程仍然活跃并保持响应。这是一个完全独立的过程。

这种方法有点像带有图形窗口的Matlab开发会话,会产生响应式命令提示符。使用这种方法,您将失去与图形窗口进程的所有联系,但是,这对于开发和调试来说是可以的。只需关闭窗口并继续测试。

多处理是专为python代码执行而设计的,这使得它可能比子进程更适合。multiprocessing是跨平台的,所以这应该在Windows或Mac上工作得很好,很少或没有调整。不需要检查底层操作系统。这是在linux Ubuntu 18.04LTS上测试的。

#!/usr/bin/python3

import time
import multiprocessing
import os

def plot_graph(data):
    from matplotlib.pyplot import plot, draw, show
    print("entered plot_graph()")
    plot(data)
    show() # this will block and remain a viable process as long as the figure window is open
    print("exiting plot_graph() process")

if __name__ == "__main__":
    print("starting __main__")
    multiprocessing.Process(target=plot_graph, args=([1, 2, 3],)).start()
    time.sleep(5)
    print("exiting main")
    os._exit(0) # this exits immediately with no cleanup or buffer flushing

运行file.py会弹出一个图形窗口,然后__main__退出,但是multiprocessing + matplotlib图形窗口仍然对缩放、平移和其他按钮有响应,因为它是一个独立的进程。

在bash命令提示符下检查进程:

Ps ax|grep -v grep |grep file.py

Try

import matplotlib.pyplot as plt
plt.plot([1,2,3])
plt.show(block=False)
# other code
# [...]

# Put
plt.show()
# at the very end of your script to make sure Python doesn't bail out
# before you finished examining.

show()文档说:

在非交互模式下,显示所有图形并阻塞直到图形关闭;在交互模式下,除非在从非交互模式切换到交互模式之前创建了图形,否则没有效果(不推荐)。在这种情况下,它会显示数字,但不会阻塞。 单个实验关键字参数block可以被设置为True或False以覆盖上面描述的阻塞行为。

使用plt.show(block=False),并在脚本的末尾调用plt.show()。

这将确保脚本完成时窗口不会关闭。