在Python解释器中的这些指令之后,你会看到一个带有图形的窗口:

from matplotlib.pyplot import *
plot([1,2,3])
show()
# other code

不幸的是,我不知道如何在程序进行进一步计算时继续交互式地探索show()创建的图形。

这可能吗?有时计算很长,如果在检查中间结果时进行计算将会有所帮助。


当前回答

最好总是检查您正在使用的库是否支持以非阻塞的方式使用。

但是如果你想要一个更通用的解决方案,或者如果没有其他方法,你可以通过使用python中包含的多处理模块来运行任何在分离进程中阻塞的东西。计算将继续:

from multiprocessing import Process
from matplotlib.pyplot import plot, show

def plot_graph(*args):
    for data in args:
        plot(data)
    show()

p = Process(target=plot_graph, args=([1, 2, 3],))
p.start()

print 'yay'
print 'computation continues...'
print 'that rocks.'

print 'Now lets wait for the graph be closed to continue...:'
p.join()

这有启动新进程的开销,而且在复杂的场景下有时更难调试,因此我更喜欢其他解决方案(使用matplotlib的非阻塞API调用)

其他回答

我所发现的最佳解决方案是,程序不会等待您关闭图形,并将所有的图放在一起,以便您可以并排检查它们,这是在最后显示所有的图。 但是通过这种方式,您不能在程序运行时检查图。

# stuff

numFig = 1

plt.figure(numFig)
numFig += 1
plt.plot(x1, y1)

# other stuff

plt.figure(numFig)
numFig += 1
plt.plot(x2, y2)

# more stuff

plt.show()

在我的例子中,我希望在计算窗口时弹出几个窗口。作为参考,方法如下:

from matplotlib.pyplot import draw, figure, show
f1, f2 = figure(), figure()
af1 = f1.add_subplot(111)
af2 = f2.add_subplot(111)
af1.plot([1,2,3])
af2.plot([6,5,4])
draw() 
print 'continuing computation'
show()

一个非常有用的matplotlib的OO接口指南。

嗯,我在搞清楚非阻塞命令方面遇到了很大的困难……但最后,我成功地重做了“Cookbook/Matplotlib/Animations -动画选定的绘图元素”的例子,所以它可以在Ubuntu 10.04的Python 2.6.5上与线程一起工作(并通过全局变量或多进程管道在线程之间传递数据)。

脚本可以在这里找到:Animating_selected_plot_elements-thread.py -否则粘贴在下面(注释更少)以供参考:

import sys
import gtk, gobject
import matplotlib
matplotlib.use('GTKAgg')
import pylab as p
import numpy as nx 
import time

import threading 



ax = p.subplot(111)
canvas = ax.figure.canvas

# for profiling
tstart = time.time()

# create the initial line
x = nx.arange(0,2*nx.pi,0.01)
line, = ax.plot(x, nx.sin(x), animated=True)

# save the clean slate background -- everything but the animated line
# is drawn and saved in the pixel buffer background
background = canvas.copy_from_bbox(ax.bbox)


# just a plain global var to pass data (from main, to plot update thread)
global mypass

# http://docs.python.org/library/multiprocessing.html#pipes-and-queues
from multiprocessing import Pipe
global pipe1main, pipe1upd
pipe1main, pipe1upd = Pipe()


# the kind of processing we might want to do in a main() function,
# will now be done in a "main thread" - so it can run in
# parallel with gobject.idle_add(update_line)
def threadMainTest():
    global mypass
    global runthread
    global pipe1main

    print "tt"

    interncount = 1

    while runthread: 
        mypass += 1
        if mypass > 100: # start "speeding up" animation, only after 100 counts have passed
            interncount *= 1.03
        pipe1main.send(interncount)
        time.sleep(0.01)
    return


# main plot / GUI update
def update_line(*args):
    global mypass
    global t0
    global runthread
    global pipe1upd

    if not runthread:
        return False 

    if pipe1upd.poll(): # check first if there is anything to receive
        myinterncount = pipe1upd.recv()

    update_line.cnt = mypass

    # restore the clean slate background
    canvas.restore_region(background)
    # update the data
    line.set_ydata(nx.sin(x+(update_line.cnt+myinterncount)/10.0))
    # just draw the animated artist
    ax.draw_artist(line)
    # just redraw the axes rectangle
    canvas.blit(ax.bbox)

    if update_line.cnt>=500:
        # print the timing info and quit
        print 'FPS:' , update_line.cnt/(time.time()-tstart)

        runthread=0
        t0.join(1)   
        print "exiting"
        sys.exit(0)

    return True



global runthread

update_line.cnt = 0
mypass = 0

runthread=1

gobject.idle_add(update_line)

global t0
t0 = threading.Thread(target=threadMainTest)
t0.start() 

# start the graphics update thread
p.show()

print "out" # will never print - show() blocks indefinitely! 

希望这能帮助到一些人, 干杯!

您可能需要阅读matplotlib文档中的这个文档,标题为:

在python shell中使用matplotlib

使用plt.show(block=False),并在脚本的末尾调用plt.show()。

这将确保脚本完成时窗口不会关闭。