在Python解释器中的这些指令之后,你会看到一个带有图形的窗口:
from matplotlib.pyplot import *
plot([1,2,3])
show()
# other code
不幸的是,我不知道如何在程序进行进一步计算时继续交互式地探索show()创建的图形。
这可能吗?有时计算很长,如果在检查中间结果时进行计算将会有所帮助。
在Python解释器中的这些指令之后,你会看到一个带有图形的窗口:
from matplotlib.pyplot import *
plot([1,2,3])
show()
# other code
不幸的是,我不知道如何在程序进行进一步计算时继续交互式地探索show()创建的图形。
这可能吗?有时计算很长,如果在检查中间结果时进行计算将会有所帮助。
当前回答
使用matplotlib调用不会阻塞:
使用画():
from matplotlib.pyplot import plot, draw, show
plot([1,2,3])
draw()
print('continue computation')
# at the end call show to ensure window won't close.
show()
使用交互模式:
from matplotlib.pyplot import plot, ion, show
ion() # enables interactive mode
plot([1,2,3]) # result shows immediatelly (implicit draw())
print('continue computation')
# at the end call show to ensure window won't close.
show()
其他回答
使用matplotlib调用不会阻塞:
使用画():
from matplotlib.pyplot import plot, draw, show
plot([1,2,3])
draw()
print('continue computation')
# at the end call show to ensure window won't close.
show()
使用交互模式:
from matplotlib.pyplot import plot, ion, show
ion() # enables interactive mode
plot([1,2,3]) # result shows immediatelly (implicit draw())
print('continue computation')
# at the end call show to ensure window won't close.
show()
使用关键字'block'来覆盖阻塞行为,例如:
from matplotlib.pyplot import show, plot
plot(1)
show(block=False)
# your code
继续您的代码。
Try
import matplotlib.pyplot as plt
plt.plot([1,2,3])
plt.show(block=False)
# other code
# [...]
# Put
plt.show()
# at the very end of your script to make sure Python doesn't bail out
# before you finished examining.
show()文档说:
在非交互模式下,显示所有图形并阻塞直到图形关闭;在交互模式下,除非在从非交互模式切换到交互模式之前创建了图形,否则没有效果(不推荐)。在这种情况下,它会显示数字,但不会阻塞。 单个实验关键字参数block可以被设置为True或False以覆盖上面描述的阻塞行为。
虽然没有直接回答OPs的请求,但我发布了这个变通方法,因为它可能会帮助一些人在这种情况下:
我用pyinstaller创建了一个.exe,因为我不能在我需要生成图形的地方安装python,所以我需要python脚本来生成图形,将其保存为.png,关闭它并继续下一个,在循环中实现为几个图形或使用一个函数。
为此,我使用:
import matplotlib.pyplot as plt
#code generating the plot in a loop or function
#saving the plot
plt.savefig(var+'_plot.png',bbox_inches='tight', dpi=250)
#you can allways reopen the plot using
os.system(var+'_plot.png') # unfortunately .png allows no interaction.
#the following avoids plot blocking the execution while in non-interactive mode
plt.show(block=False)
#and the following closes the plot while next iteration will generate new instance.
plt.close()
其中“var”标识循环中的情节,因此它不会被覆盖。
在许多情况下,将图像保存为硬盘上的.png文件会更方便。原因如下:
优点:
在这个过程中,你可以随时打开、查看和关闭它。当应用程序运行较长时间时,这尤其方便 时间。 什么都不会弹出,你也不会被迫打开窗户。这在处理许多数字时特别方便。 您的图像可用于以后的参考,并且在关闭图形窗口时不会丢失。
缺点:
我唯一能想到的是,你将不得不去查找文件夹,并打开自己的图像。