我有一个数据帧和一些列有NA值。

我如何将这些NA值替换为零?


当前回答

cleaner包有一个na_replace()泛型,默认情况下将数值替换为0,将逻辑替换为FALSE,将日期替换为今天,等等:

library(dplyr)
library(cleaner)

starwars %>% na_replace()
na_replace(starwars)

它甚至支持矢量化替换:

mtcars[1:6, c("mpg", "hp")] <- NA
na_replace(mtcars, mpg, hp, replacement = c(999, 123))

文档:https://msberends.github.io/cleaner/reference/na_replace.html

其他回答

对于单个向量:

x <- c(1,2,NA,4,5)
x[is.na(x)] <- 0

对于data.frame,在上面的基础上创建一个函数,然后将其应用到列上。

下次请提供一个可重复的例子,具体如下:

如何制作一个优秀的R可复制示例?

见我在@gsk3 answer中的评论。举个简单的例子:

> m <- matrix(sample(c(NA, 1:10), 100, replace = TRUE), 10)
> d <- as.data.frame(m)
   V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
1   4  3 NA  3  7  6  6 10  6   5
2   9  8  9  5 10 NA  2  1  7   2
3   1  1  6  3  6 NA  1  4  1   6
4  NA  4 NA  7 10  2 NA  4  1   8
5   1  2  4 NA  2  6  2  6  7   4
6  NA  3 NA NA 10  2  1 10  8   4
7   4  4  9 10  9  8  9  4 10  NA
8   5  8  3  2  1  4  5  9  4   7
9   3  9 10  1  9  9 10  5  3   3
10  4  2  2  5 NA  9  7  2  5   5

> d[is.na(d)] <- 0

> d
   V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
1   4  3  0  3  7  6  6 10  6   5
2   9  8  9  5 10  0  2  1  7   2
3   1  1  6  3  6  0  1  4  1   6
4   0  4  0  7 10  2  0  4  1   8
5   1  2  4  0  2  6  2  6  7   4
6   0  3  0  0 10  2  1 10  8   4
7   4  4  9 10  9  8  9  4 10   0
8   5  8  3  2  1  4  5  9  4   7
9   3  9 10  1  9  9 10  5  3   3
10  4  2  2  5  0  9  7  2  5   5

没有必要去申请。=)

EDIT

你也应该看看norm package。它有很多很好的缺失数据分析功能。=)

不需要使用任何库。

df <- data.frame(a=c(1,3,5,NA))

df$a[is.na(df$a)] <- 0

df

我本想评论@ianmunoz的帖子,但我没有足够的声誉。你可以结合dplyr的mutate_each和replace来处理NA到0的替换。使用@aL3xa的答案的数据帧…

> m <- matrix(sample(c(NA, 1:10), 100, replace = TRUE), 10)
> d <- as.data.frame(m)
> d

    V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
1   4  8  1  9  6  9 NA  8  9   8
2   8  3  6  8  2  1 NA NA  6   3
3   6  6  3 NA  2 NA NA  5  7   7
4  10  6  1  1  7  9  1 10  3  10
5  10  6  7 10 10  3  2  5  4   6
6   2  4  1  5  7 NA NA  8  4   4
7   7  2  3  1  4 10 NA  8  7   7
8   9  5  8 10  5  3  5  8  3   2
9   9  1  8  7  6  5 NA NA  6   7
10  6 10  8  7  1  1  2  2  5   7

> d %>% mutate_each( funs_( interp( ~replace(., is.na(.),0) ) ) )

    V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
1   4  8  1  9  6  9  0  8  9   8
2   8  3  6  8  2  1  0  0  6   3
3   6  6  3  0  2  0  0  5  7   7
4  10  6  1  1  7  9  1 10  3  10
5  10  6  7 10 10  3  2  5  4   6
6   2  4  1  5  7  0  0  8  4   4
7   7  2  3  1  4 10  0  8  7   7
8   9  5  8 10  5  3  5  8  3   2
9   9  1  8  7  6  5  0  0  6   7
10  6 10  8  7  1  1  2  2  5   7

我们在这里使用的是标准求值(SE),这就是为什么我们需要在“funs_”上加下划线。我们还使用了lazyeval的interp/~和。引用“我们正在处理的所有东西”,即数据帧。现在有零了!

在dplyr 0.5.0中,你可以使用coalesce函数,通过做coalesce(vec, 0)可以很容易地集成到%>%管道中。这将把vec中的所有NAs替换为0:

假设我们有一个带NAs的数据帧:

library(dplyr)
df <- data.frame(v = c(1, 2, 3, NA, 5, 6, 8))

df
#    v
# 1  1
# 2  2
# 3  3
# 4 NA
# 5  5
# 6  6
# 7  8

df %>% mutate(v = coalesce(v, 0))
#   v
# 1 1
# 2 2
# 3 3
# 4 0
# 5 5
# 6 6
# 7 8