我有一个数据帧和一些列有NA值。
我如何将这些NA值替换为零?
我有一个数据帧和一些列有NA值。
我如何将这些NA值替换为零?
当前回答
cleaner包有一个na_replace()泛型,默认情况下将数值替换为0,将逻辑替换为FALSE,将日期替换为今天,等等:
library(dplyr)
library(cleaner)
starwars %>% na_replace()
na_replace(starwars)
它甚至支持矢量化替换:
mtcars[1:6, c("mpg", "hp")] <- NA
na_replace(mtcars, mpg, hp, replacement = c(999, 123))
文档:https://msberends.github.io/cleaner/reference/na_replace.html
其他回答
我想添加一个使用流行的Hmisc包的下一个解决方案。
library(Hmisc)
data(airquality)
# imputing with 0 - all columns
# although my favorite one for simple imputations is Hmisc::impute(x, "random")
> dd <- data.frame(Map(function(x) Hmisc::impute(x, 0), airquality))
> str(dd[[1]])
'impute' Named num [1:153] 41 36 12 18 0 28 23 19 8 0 ...
- attr(*, "names")= chr [1:153] "1" "2" "3" "4" ...
- attr(*, "imputed")= int [1:37] 5 10 25 26 27 32 33 34 35 36 ...
> dd[[1]][1:10]
1 2 3 4 5 6 7 8 9 10
41 36 12 18 0* 28 23 19 8 0*
可以看到,所有的imputation元数据都被分配为属性。因此它可以在以后使用。
dplyr例子:
library(dplyr)
df1 <- df1 %>%
mutate(myCol1 = if_else(is.na(myCol1), 0, myCol1))
注意:这适用于每个选定的列,如果我们需要对所有列都这样做,请参阅@reidjax的答案使用mutate_each。
在dplyr 0.5.0中,你可以使用coalesce函数,通过做coalesce(vec, 0)可以很容易地集成到%>%管道中。这将把vec中的所有NAs替换为0:
假设我们有一个带NAs的数据帧:
library(dplyr)
df <- data.frame(v = c(1, 2, 3, NA, 5, 6, 8))
df
# v
# 1 1
# 2 2
# 3 3
# 4 NA
# 5 5
# 6 6
# 7 8
df %>% mutate(v = coalesce(v, 0))
# v
# 1 1
# 2 2
# 3 3
# 4 0
# 5 5
# 6 6
# 7 8
我知道这个问题已经有了答案,但这样做可能对一些人更有用:
定义这个函数:
na.zero <- function (x) {
x[is.na(x)] <- 0
return(x)
}
现在,无论何时你需要将向量中的NA转换为0,你可以这样做:
na.zero(some.vector)
这是一个更灵活的解决方案。不管你的数据帧有多大,它都能工作,或者用0或0来表示0。
library(dplyr) # make sure dplyr ver is >= 1.00
df %>%
mutate(across(everything(), na_if, 0)) # if 0 is indicated by `zero` then replace `0` with `zero`