我有一个数据帧和一些列有NA值。
我如何将这些NA值替换为零?
我有一个数据帧和一些列有NA值。
我如何将这些NA值替换为零?
当前回答
我知道这个问题已经有了答案,但这样做可能对一些人更有用:
定义这个函数:
na.zero <- function (x) {
x[is.na(x)] <- 0
return(x)
}
现在,无论何时你需要将向量中的NA转换为0,你可以这样做:
na.zero(some.vector)
其他回答
我本想评论@ianmunoz的帖子,但我没有足够的声誉。你可以结合dplyr的mutate_each和replace来处理NA到0的替换。使用@aL3xa的答案的数据帧…
> m <- matrix(sample(c(NA, 1:10), 100, replace = TRUE), 10)
> d <- as.data.frame(m)
> d
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
1 4 8 1 9 6 9 NA 8 9 8
2 8 3 6 8 2 1 NA NA 6 3
3 6 6 3 NA 2 NA NA 5 7 7
4 10 6 1 1 7 9 1 10 3 10
5 10 6 7 10 10 3 2 5 4 6
6 2 4 1 5 7 NA NA 8 4 4
7 7 2 3 1 4 10 NA 8 7 7
8 9 5 8 10 5 3 5 8 3 2
9 9 1 8 7 6 5 NA NA 6 7
10 6 10 8 7 1 1 2 2 5 7
> d %>% mutate_each( funs_( interp( ~replace(., is.na(.),0) ) ) )
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
1 4 8 1 9 6 9 0 8 9 8
2 8 3 6 8 2 1 0 0 6 3
3 6 6 3 0 2 0 0 5 7 7
4 10 6 1 1 7 9 1 10 3 10
5 10 6 7 10 10 3 2 5 4 6
6 2 4 1 5 7 0 0 8 4 4
7 7 2 3 1 4 10 0 8 7 7
8 9 5 8 10 5 3 5 8 3 2
9 9 1 8 7 6 5 0 0 6 7
10 6 10 8 7 1 1 2 2 5 7
我们在这里使用的是标准求值(SE),这就是为什么我们需要在“funs_”上加下划线。我们还使用了lazyeval的interp/~和。引用“我们正在处理的所有东西”,即数据帧。现在有零了!
这并不是一个新的解决方案,但是我喜欢编写内联lambdas来处理我无法让包完成的事情。在这种情况下,
df %>%
(function(x) { x[is.na(x)] <- 0; return(x) })
因为R不像你在Python中可能看到的那样“通过对象传递”,所以这个解决方案不会修改原始变量df,因此与大多数其他解决方案一样,但是不需要对特定包的复杂知识有太多的要求。
注意函数定义周围的括号!虽然对我来说这似乎有点多余,因为函数定义是用花括号括起来的,但对于magrittr,需要在括号内定义内联函数。
在data.frame中,不需要通过突变来创建新列。
library(tidyverse)
k <- c(1,2,80,NA,NA,51)
j <- c(NA,NA,3,31,12,NA)
df <- data.frame(k,j)%>%
replace_na(list(j=0))#convert only column j, for example
结果
k j
1 0
2 0
80 3
NA 31
NA 12
51 0
更通用的方法是在矩阵或向量中使用replace()将NA替换为0
例如:
> x <- c(1,2,NA,NA,1,1)
> x1 <- replace(x,is.na(x),0)
> x1
[1] 1 2 0 0 1 1
这也是在dplyr中使用ifelse()的一种替代方法
df = data.frame(col = c(1,2,NA,NA,1,1))
df <- df %>%
mutate(col = replace(col,is.na(col),0))
我想添加一个使用流行的Hmisc包的下一个解决方案。
library(Hmisc)
data(airquality)
# imputing with 0 - all columns
# although my favorite one for simple imputations is Hmisc::impute(x, "random")
> dd <- data.frame(Map(function(x) Hmisc::impute(x, 0), airquality))
> str(dd[[1]])
'impute' Named num [1:153] 41 36 12 18 0 28 23 19 8 0 ...
- attr(*, "names")= chr [1:153] "1" "2" "3" "4" ...
- attr(*, "imputed")= int [1:37] 5 10 25 26 27 32 33 34 35 36 ...
> dd[[1]][1:10]
1 2 3 4 5 6 7 8 9 10
41 36 12 18 0* 28 23 19 8 0*
可以看到,所有的imputation元数据都被分配为属性。因此它可以在以后使用。