我有一个数据帧和一些列有NA值。

我如何将这些NA值替换为零?


当前回答

对于单个向量:

x <- c(1,2,NA,4,5)
x[is.na(x)] <- 0

对于data.frame,在上面的基础上创建一个函数,然后将其应用到列上。

下次请提供一个可重复的例子,具体如下:

如何制作一个优秀的R可复制示例?

其他回答

不需要使用任何库。

df <- data.frame(a=c(1,3,5,NA))

df$a[is.na(df$a)] <- 0

df

另一个使用imputeTS包的例子:

library(imputeTS)
na.replace(yourDataframe, 0)

如果你想在因子变量中替换NAs,这可能是有用的:

n <- length(levels(data.vector))+1

data.vector <- as.numeric(data.vector)
data.vector[is.na(data.vector)] <- n
data.vector <- as.factor(data.vector)
levels(data.vector) <- c("level1","level2",...,"leveln", "NAlevel") 

它将因子向量转换为数值向量,并添加另一个人工数值因子水平,然后将其转换回具有您选择的额外“na水平”的因子向量。

在data.frame中,不需要通过突变来创建新列。

library(tidyverse)    
k <- c(1,2,80,NA,NA,51)
j <- c(NA,NA,3,31,12,NA)
        
df <- data.frame(k,j)%>%
   replace_na(list(j=0))#convert only column j, for example
    

结果

k   j
1   0           
2   0           
80  3           
NA  31          
NA  12          
51  0   

在dplyr 0.5.0中,你可以使用coalesce函数,通过做coalesce(vec, 0)可以很容易地集成到%>%管道中。这将把vec中的所有NAs替换为0:

假设我们有一个带NAs的数据帧:

library(dplyr)
df <- data.frame(v = c(1, 2, 3, NA, 5, 6, 8))

df
#    v
# 1  1
# 2  2
# 3  3
# 4 NA
# 5  5
# 6  6
# 7  8

df %>% mutate(v = coalesce(v, 0))
#   v
# 1 1
# 2 2
# 3 3
# 4 0
# 5 5
# 6 6
# 7 8