我有一个数据帧和一些列有NA值。

我如何将这些NA值替换为零?


当前回答

dplyr例子:

library(dplyr)

df1 <- df1 %>%
    mutate(myCol1 = if_else(is.na(myCol1), 0, myCol1))

注意:这适用于每个选定的列,如果我们需要对所有列都这样做,请参阅@reidjax的答案使用mutate_each。

其他回答

DPLYR >= 1.0.0

在dplyr的新版本中:

Across()取代了一系列“作用域变量”,如summarise_at()、summarise_if()和summarise_all()。

df <- data.frame(a = c(LETTERS[1:3], NA), b = c(NA, 1:3))

library(tidyverse)

df %>% 
  mutate(across(where(anyNA), ~ replace_na(., 0)))

  a b
1 A 0
2 B 1
3 C 2
4 0 3

这段代码将强制0为第一列中的字符。要根据列类型替换NA,您可以使用类似呜呜声的公式,其中:

df %>% 
  mutate(across(where(~ anyNA(.) & is.character(.)), ~ replace_na(., "0")))

对于单个向量:

x <- c(1,2,NA,4,5)
x[is.na(x)] <- 0

对于data.frame,在上面的基础上创建一个函数,然后将其应用到列上。

下次请提供一个可重复的例子,具体如下:

如何制作一个优秀的R可复制示例?

如果我们试图在导出时替换NAs,例如写入csv时,那么我们可以使用:

  write.csv(data, "data.csv", na = "0")

我想添加一个使用流行的Hmisc包的下一个解决方案。

library(Hmisc)
data(airquality)
# imputing with 0 - all columns
# although my favorite one for simple imputations is Hmisc::impute(x, "random")
> dd <- data.frame(Map(function(x) Hmisc::impute(x, 0), airquality))
> str(dd[[1]])
 'impute' Named num [1:153] 41 36 12 18 0 28 23 19 8 0 ...
 - attr(*, "names")= chr [1:153] "1" "2" "3" "4" ...
 - attr(*, "imputed")= int [1:37] 5 10 25 26 27 32 33 34 35 36 ...
> dd[[1]][1:10]
  1   2   3   4   5   6   7   8   9  10 
 41  36  12  18  0*  28  23  19   8  0* 

可以看到,所有的imputation元数据都被分配为属性。因此它可以在以后使用。

也可以使用tidyr::replace_na。

    library(tidyr)
    df <- df %>% mutate_all(funs(replace_na(.,0)))

编辑(dplyr > 1.0.0):

df %>% mutate(across(everything(), .fns = ~replace_na(.,0)))