我有一个数据帧和一些列有NA值。
我如何将这些NA值替换为零?
我有一个数据帧和一些列有NA值。
我如何将这些NA值替换为零?
当前回答
如果你想在因子变量中替换NAs,这可能是有用的:
n <- length(levels(data.vector))+1
data.vector <- as.numeric(data.vector)
data.vector[is.na(data.vector)] <- n
data.vector <- as.factor(data.vector)
levels(data.vector) <- c("level1","level2",...,"leveln", "NAlevel")
它将因子向量转换为数值向量,并添加另一个人工数值因子水平,然后将其转换回具有您选择的额外“na水平”的因子向量。
其他回答
dplyr例子:
library(dplyr)
df1 <- df1 %>%
mutate(myCol1 = if_else(is.na(myCol1), 0, myCol1))
注意:这适用于每个选定的列,如果我们需要对所有列都这样做,请参阅@reidjax的答案使用mutate_each。
cleaner包有一个na_replace()泛型,默认情况下将数值替换为0,将逻辑替换为FALSE,将日期替换为今天,等等:
library(dplyr)
library(cleaner)
starwars %>% na_replace()
na_replace(starwars)
它甚至支持矢量化替换:
mtcars[1:6, c("mpg", "hp")] <- NA
na_replace(mtcars, mpg, hp, replacement = c(999, 123))
文档:https://msberends.github.io/cleaner/reference/na_replace.html
这个从Datacamp中提取的简单函数可以帮助:
replace_missings <- function(x, replacement) {
is_miss <- is.na(x)
x[is_miss] <- replacement
message(sum(is_miss), " missings replaced by the value ", replacement)
x
}
Then
replace_missings(df, replacement = 0)
不需要使用任何库。
df <- data.frame(a=c(1,3,5,NA))
df$a[is.na(df$a)] <- 0
df
另一个与tidyrmethod replace_na兼容的dplyr管道选项,适用于多个列:
require(dplyr)
require(tidyr)
m <- matrix(sample(c(NA, 1:10), 100, replace = TRUE), 10)
d <- as.data.frame(m)
myList <- setNames(lapply(vector("list", ncol(d)), function(x) x <- 0), names(d))
df <- d %>% replace_na(myList)
你可以很容易地限制到例如数字列:
d$str <- c("string", NA)
myList <- myList[sapply(d, is.numeric)]
df <- d %>% replace_na(myList)