我有一个数据帧和一些列有NA值。
我如何将这些NA值替换为零?
我有一个数据帧和一些列有NA值。
我如何将这些NA值替换为零?
当前回答
如果你想在因子变量中替换NAs,这可能是有用的:
n <- length(levels(data.vector))+1
data.vector <- as.numeric(data.vector)
data.vector[is.na(data.vector)] <- n
data.vector <- as.factor(data.vector)
levels(data.vector) <- c("level1","level2",...,"leveln", "NAlevel")
它将因子向量转换为数值向量,并添加另一个人工数值因子水平,然后将其转换回具有您选择的额外“na水平”的因子向量。
其他回答
这是一个更灵活的解决方案。不管你的数据帧有多大,它都能工作,或者用0或0来表示0。
library(dplyr) # make sure dplyr ver is >= 1.00
df %>%
mutate(across(everything(), na_if, 0)) # if 0 is indicated by `zero` then replace `0` with `zero`
这并不是一个新的解决方案,但是我喜欢编写内联lambdas来处理我无法让包完成的事情。在这种情况下,
df %>%
(function(x) { x[is.na(x)] <- 0; return(x) })
因为R不像你在Python中可能看到的那样“通过对象传递”,所以这个解决方案不会修改原始变量df,因此与大多数其他解决方案一样,但是不需要对特定包的复杂知识有太多的要求。
注意函数定义周围的括号!虽然对我来说这似乎有点多余,因为函数定义是用花括号括起来的,但对于magrittr,需要在括号内定义内联函数。
专用函数nafill和setnafill,用于此目的,在data.table中。 只要可用,它们就将列分发到多个线程上进行计算。
library(data.table)
ans_df <- nafill(df, fill=0)
# or even faster, in-place
setnafill(df, fill=0)
DPLYR >= 1.0.0
在dplyr的新版本中:
Across()取代了一系列“作用域变量”,如summarise_at()、summarise_if()和summarise_all()。
df <- data.frame(a = c(LETTERS[1:3], NA), b = c(NA, 1:3))
library(tidyverse)
df %>%
mutate(across(where(anyNA), ~ replace_na(., 0)))
a b
1 A 0
2 B 1
3 C 2
4 0 3
这段代码将强制0为第一列中的字符。要根据列类型替换NA,您可以使用类似呜呜声的公式,其中:
df %>%
mutate(across(where(~ anyNA(.) & is.character(.)), ~ replace_na(., "0")))
另一个与tidyrmethod replace_na兼容的dplyr管道选项,适用于多个列:
require(dplyr)
require(tidyr)
m <- matrix(sample(c(NA, 1:10), 100, replace = TRUE), 10)
d <- as.data.frame(m)
myList <- setNames(lapply(vector("list", ncol(d)), function(x) x <- 0), names(d))
df <- d %>% replace_na(myList)
你可以很容易地限制到例如数字列:
d$str <- c("string", NA)
myList <- myList[sapply(d, is.numeric)]
df <- d %>% replace_na(myList)