我有一个数据帧和一些列有NA值。

我如何将这些NA值替换为零?


当前回答

专用函数nafill和setnafill,用于此目的,在data.table中。 只要可用,它们就将列分发到多个线程上进行计算。

library(data.table)

ans_df <- nafill(df, fill=0)

# or even faster, in-place
setnafill(df, fill=0)

其他回答

取代。数据帧中的na和NULL。

带列的数据帧

A name(美元是na (A name) < 0美元。

OR

A $ name[是na (A $ name) < - " na "

所有数据帧

自由度[is.na(DF)]<-0

将数据帧中的na替换为空白

df[is.na(df)]<-“”

将NULL替换为NA

df[is.null(df)] <- NA

dplyr例子:

library(dplyr)

df1 <- df1 %>%
    mutate(myCol1 = if_else(is.na(myCol1), 0, myCol1))

注意:这适用于每个选定的列,如果我们需要对所有列都这样做,请参阅@reidjax的答案使用mutate_each。

如果我们试图在导出时替换NAs,例如写入csv时,那么我们可以使用:

  write.csv(data, "data.csv", na = "0")

这并不是一个新的解决方案,但是我喜欢编写内联lambdas来处理我无法让包完成的事情。在这种情况下,

df %>%
   (function(x) { x[is.na(x)] <- 0; return(x) })

因为R不像你在Python中可能看到的那样“通过对象传递”,所以这个解决方案不会修改原始变量df,因此与大多数其他解决方案一样,但是不需要对特定包的复杂知识有太多的要求。

注意函数定义周围的括号!虽然对我来说这似乎有点多余,因为函数定义是用花括号括起来的,但对于magrittr,需要在括号内定义内联函数。

这是一个更灵活的解决方案。不管你的数据帧有多大,它都能工作,或者用0或0来表示0。

library(dplyr) # make sure dplyr ver is >= 1.00

df %>%
    mutate(across(everything(), na_if, 0)) # if 0 is indicated by `zero` then replace `0` with `zero`