我有一个数据帧和一些列有NA值。

我如何将这些NA值替换为零?


当前回答

也可以使用tidyr::replace_na。

    library(tidyr)
    df <- df %>% mutate_all(funs(replace_na(.,0)))

编辑(dplyr > 1.0.0):

df %>% mutate(across(everything(), .fns = ~replace_na(.,0))) 

其他回答

专用函数nafill和setnafill,用于此目的,在data.table中。 只要可用,它们就将列分发到多个线程上进行计算。

library(data.table)

ans_df <- nafill(df, fill=0)

# or even faster, in-place
setnafill(df, fill=0)

取代。数据帧中的na和NULL。

带列的数据帧

A name(美元是na (A name) < 0美元。

OR

A $ name[是na (A $ name) < - " na "

所有数据帧

自由度[is.na(DF)]<-0

将数据帧中的na替换为空白

df[is.na(df)]<-“”

将NULL替换为NA

df[is.null(df)] <- NA

另一个与tidyrmethod replace_na兼容的dplyr管道选项,适用于多个列:

require(dplyr)
require(tidyr)

m <- matrix(sample(c(NA, 1:10), 100, replace = TRUE), 10)
d <- as.data.frame(m)

myList <- setNames(lapply(vector("list", ncol(d)), function(x) x <- 0), names(d))

df <- d %>% replace_na(myList)

你可以很容易地限制到例如数字列:

d$str <- c("string", NA)

myList <- myList[sapply(d, is.numeric)]

df <- d %>% replace_na(myList)

我个人用过,效果很好:

players_wd$APPROVED_WD[is.na(players_wd$APPROVED_WD)] <- 0

DPLYR >= 1.0.0

在dplyr的新版本中:

Across()取代了一系列“作用域变量”,如summarise_at()、summarise_if()和summarise_all()。

df <- data.frame(a = c(LETTERS[1:3], NA), b = c(NA, 1:3))

library(tidyverse)

df %>% 
  mutate(across(where(anyNA), ~ replace_na(., 0)))

  a b
1 A 0
2 B 1
3 C 2
4 0 3

这段代码将强制0为第一列中的字符。要根据列类型替换NA,您可以使用类似呜呜声的公式,其中:

df %>% 
  mutate(across(where(~ anyNA(.) & is.character(.)), ~ replace_na(., "0")))