我有一个数据帧和一些列有NA值。

我如何将这些NA值替换为零?


当前回答

也可以使用tidyr::replace_na。

    library(tidyr)
    df <- df %>% mutate_all(funs(replace_na(.,0)))

编辑(dplyr > 1.0.0):

df %>% mutate(across(everything(), .fns = ~replace_na(.,0))) 

其他回答

这是一个更灵活的解决方案。不管你的数据帧有多大,它都能工作,或者用0或0来表示0。

library(dplyr) # make sure dplyr ver is >= 1.00

df %>%
    mutate(across(everything(), na_if, 0)) # if 0 is indicated by `zero` then replace `0` with `zero`

在dplyr 0.5.0中,你可以使用coalesce函数,通过做coalesce(vec, 0)可以很容易地集成到%>%管道中。这将把vec中的所有NAs替换为0:

假设我们有一个带NAs的数据帧:

library(dplyr)
df <- data.frame(v = c(1, 2, 3, NA, 5, 6, 8))

df
#    v
# 1  1
# 2  2
# 3  3
# 4 NA
# 5  5
# 6  6
# 7  8

df %>% mutate(v = coalesce(v, 0))
#   v
# 1 1
# 2 2
# 3 3
# 4 0
# 5 5
# 6 6
# 7 8

另一个选项使用sapply将所有NA替换为零。下面是一些可重复的代码(数据来自@aL3xa):

set.seed(7) # for reproducibility
m <- matrix(sample(c(NA, 1:10), 100, replace = TRUE), 10)
d <- as.data.frame(m)
d
#>    V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
#> 1   9  7  5  5  7  7  4  6  6   7
#> 2   2  5 10  7  8  9  8  8  1   8
#> 3   6  7  4 10  4  9  6  8 NA  10
#> 4   1 10  3  7  5  7  7  7 NA   8
#> 5   9  9 10 NA  7 10  1  5 NA   5
#> 6   5  2  5 10  8  1  1  5 10   3
#> 7   7  3  9  3  1  6  7  3  1  10
#> 8   7  7  6  8  4  4  5 NA  8   7
#> 9   2  1  1  2  7  5  9 10  9   3
#> 10  7  5  3  4  9  2  7  6 NA   5
d[sapply(d, \(x) is.na(x))] <- 0
d
#>    V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
#> 1   9  7  5  5  7  7  4  6  6   7
#> 2   2  5 10  7  8  9  8  8  1   8
#> 3   6  7  4 10  4  9  6  8  0  10
#> 4   1 10  3  7  5  7  7  7  0   8
#> 5   9  9 10  0  7 10  1  5  0   5
#> 6   5  2  5 10  8  1  1  5 10   3
#> 7   7  3  9  3  1  6  7  3  1  10
#> 8   7  7  6  8  4  4  5  0  8   7
#> 9   2  1  1  2  7  5  9 10  9   3
#> 10  7  5  3  4  9  2  7  6  0   5

使用reprex v2.0.2创建于2023-01-15


请注意:从R 4.1.0开始,您可以使用\(x)而不是函数(x)。

专用函数nafill和setnafill,用于此目的,在data.table中。 只要可用,它们就将列分发到多个线程上进行计算。

library(data.table)

ans_df <- nafill(df, fill=0)

# or even faster, in-place
setnafill(df, fill=0)

DPLYR >= 1.0.0

在dplyr的新版本中:

Across()取代了一系列“作用域变量”,如summarise_at()、summarise_if()和summarise_all()。

df <- data.frame(a = c(LETTERS[1:3], NA), b = c(NA, 1:3))

library(tidyverse)

df %>% 
  mutate(across(where(anyNA), ~ replace_na(., 0)))

  a b
1 A 0
2 B 1
3 C 2
4 0 3

这段代码将强制0为第一列中的字符。要根据列类型替换NA,您可以使用类似呜呜声的公式,其中:

df %>% 
  mutate(across(where(~ anyNA(.) & is.character(.)), ~ replace_na(., "0")))