我有一个数据帧和一些列有NA值。
我如何将这些NA值替换为零?
我有一个数据帧和一些列有NA值。
我如何将这些NA值替换为零?
当前回答
在data.frame中,不需要通过突变来创建新列。
library(tidyverse)
k <- c(1,2,80,NA,NA,51)
j <- c(NA,NA,3,31,12,NA)
df <- data.frame(k,j)%>%
replace_na(list(j=0))#convert only column j, for example
结果
k j
1 0
2 0
80 3
NA 31
NA 12
51 0
其他回答
这个从Datacamp中提取的简单函数可以帮助:
replace_missings <- function(x, replacement) {
is_miss <- is.na(x)
x[is_miss] <- replacement
message(sum(is_miss), " missings replaced by the value ", replacement)
x
}
Then
replace_missings(df, replacement = 0)
专用函数nafill和setnafill,用于此目的,在data.table中。 只要可用,它们就将列分发到多个线程上进行计算。
library(data.table)
ans_df <- nafill(df, fill=0)
# or even faster, in-place
setnafill(df, fill=0)
我想添加一个使用流行的Hmisc包的下一个解决方案。
library(Hmisc)
data(airquality)
# imputing with 0 - all columns
# although my favorite one for simple imputations is Hmisc::impute(x, "random")
> dd <- data.frame(Map(function(x) Hmisc::impute(x, 0), airquality))
> str(dd[[1]])
'impute' Named num [1:153] 41 36 12 18 0 28 23 19 8 0 ...
- attr(*, "names")= chr [1:153] "1" "2" "3" "4" ...
- attr(*, "imputed")= int [1:37] 5 10 25 26 27 32 33 34 35 36 ...
> dd[[1]][1:10]
1 2 3 4 5 6 7 8 9 10
41 36 12 18 0* 28 23 19 8 0*
可以看到,所有的imputation元数据都被分配为属性。因此它可以在以后使用。
dplyr例子:
library(dplyr)
df1 <- df1 %>%
mutate(myCol1 = if_else(is.na(myCol1), 0, myCol1))
注意:这适用于每个选定的列,如果我们需要对所有列都这样做,请参阅@reidjax的答案使用mutate_each。
这并不是一个新的解决方案,但是我喜欢编写内联lambdas来处理我无法让包完成的事情。在这种情况下,
df %>%
(function(x) { x[is.na(x)] <- 0; return(x) })
因为R不像你在Python中可能看到的那样“通过对象传递”,所以这个解决方案不会修改原始变量df,因此与大多数其他解决方案一样,但是不需要对特定包的复杂知识有太多的要求。
注意函数定义周围的括号!虽然对我来说这似乎有点多余,因为函数定义是用花括号括起来的,但对于magrittr,需要在括号内定义内联函数。