我有一个数据帧和一些列有NA值。

我如何将这些NA值替换为零?


当前回答

一个简单的方法是用if_na from hablar:

library(dplyr)
library(hablar)

df <- tibble(a = c(1, 2, 3, NA, 5, 6, 8))

df %>% 
  mutate(a = if_na(a, 0))

返回:

      a
  <dbl>
1     1
2     2
3     3
4     0
5     5
6     6
7     8

其他回答

如果我们试图在导出时替换NAs,例如写入csv时,那么我们可以使用:

  write.csv(data, "data.csv", na = "0")

如果你想在因子变量中替换NAs,这可能是有用的:

n <- length(levels(data.vector))+1

data.vector <- as.numeric(data.vector)
data.vector[is.na(data.vector)] <- n
data.vector <- as.factor(data.vector)
levels(data.vector) <- c("level1","level2",...,"leveln", "NAlevel") 

它将因子向量转换为数值向量,并添加另一个人工数值因子水平,然后将其转换回具有您选择的额外“na水平”的因子向量。

不需要使用任何库。

df <- data.frame(a=c(1,3,5,NA))

df$a[is.na(df$a)] <- 0

df

我想添加一个使用流行的Hmisc包的下一个解决方案。

library(Hmisc)
data(airquality)
# imputing with 0 - all columns
# although my favorite one for simple imputations is Hmisc::impute(x, "random")
> dd <- data.frame(Map(function(x) Hmisc::impute(x, 0), airquality))
> str(dd[[1]])
 'impute' Named num [1:153] 41 36 12 18 0 28 23 19 8 0 ...
 - attr(*, "names")= chr [1:153] "1" "2" "3" "4" ...
 - attr(*, "imputed")= int [1:37] 5 10 25 26 27 32 33 34 35 36 ...
> dd[[1]][1:10]
  1   2   3   4   5   6   7   8   9  10 
 41  36  12  18  0*  28  23  19   8  0* 

可以看到,所有的imputation元数据都被分配为属性。因此它可以在以后使用。

一个简单的方法是用if_na from hablar:

library(dplyr)
library(hablar)

df <- tibble(a = c(1, 2, 3, NA, 5, 6, 8))

df %>% 
  mutate(a = if_na(a, 0))

返回:

      a
  <dbl>
1     1
2     2
3     3
4     0
5     5
6     6
7     8