我有一个数据帧和一些列有NA值。
我如何将这些NA值替换为零?
我有一个数据帧和一些列有NA值。
我如何将这些NA值替换为零?
当前回答
另一个选项使用sapply将所有NA替换为零。下面是一些可重复的代码(数据来自@aL3xa):
set.seed(7) # for reproducibility
m <- matrix(sample(c(NA, 1:10), 100, replace = TRUE), 10)
d <- as.data.frame(m)
d
#> V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
#> 1 9 7 5 5 7 7 4 6 6 7
#> 2 2 5 10 7 8 9 8 8 1 8
#> 3 6 7 4 10 4 9 6 8 NA 10
#> 4 1 10 3 7 5 7 7 7 NA 8
#> 5 9 9 10 NA 7 10 1 5 NA 5
#> 6 5 2 5 10 8 1 1 5 10 3
#> 7 7 3 9 3 1 6 7 3 1 10
#> 8 7 7 6 8 4 4 5 NA 8 7
#> 9 2 1 1 2 7 5 9 10 9 3
#> 10 7 5 3 4 9 2 7 6 NA 5
d[sapply(d, \(x) is.na(x))] <- 0
d
#> V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
#> 1 9 7 5 5 7 7 4 6 6 7
#> 2 2 5 10 7 8 9 8 8 1 8
#> 3 6 7 4 10 4 9 6 8 0 10
#> 4 1 10 3 7 5 7 7 7 0 8
#> 5 9 9 10 0 7 10 1 5 0 5
#> 6 5 2 5 10 8 1 1 5 10 3
#> 7 7 3 9 3 1 6 7 3 1 10
#> 8 7 7 6 8 4 4 5 0 8 7
#> 9 2 1 1 2 7 5 9 10 9 3
#> 10 7 5 3 4 9 2 7 6 0 5
使用reprex v2.0.2创建于2023-01-15
请注意:从R 4.1.0开始,您可以使用\(x)而不是函数(x)。
其他回答
另一个与tidyrmethod replace_na兼容的dplyr管道选项,适用于多个列:
require(dplyr)
require(tidyr)
m <- matrix(sample(c(NA, 1:10), 100, replace = TRUE), 10)
d <- as.data.frame(m)
myList <- setNames(lapply(vector("list", ncol(d)), function(x) x <- 0), names(d))
df <- d %>% replace_na(myList)
你可以很容易地限制到例如数字列:
d$str <- c("string", NA)
myList <- myList[sapply(d, is.numeric)]
df <- d %>% replace_na(myList)
cleaner包有一个na_replace()泛型,默认情况下将数值替换为0,将逻辑替换为FALSE,将日期替换为今天,等等:
library(dplyr)
library(cleaner)
starwars %>% na_replace()
na_replace(starwars)
它甚至支持矢量化替换:
mtcars[1:6, c("mpg", "hp")] <- NA
na_replace(mtcars, mpg, hp, replacement = c(999, 123))
文档:https://msberends.github.io/cleaner/reference/na_replace.html
我本想评论@ianmunoz的帖子,但我没有足够的声誉。你可以结合dplyr的mutate_each和replace来处理NA到0的替换。使用@aL3xa的答案的数据帧…
> m <- matrix(sample(c(NA, 1:10), 100, replace = TRUE), 10)
> d <- as.data.frame(m)
> d
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
1 4 8 1 9 6 9 NA 8 9 8
2 8 3 6 8 2 1 NA NA 6 3
3 6 6 3 NA 2 NA NA 5 7 7
4 10 6 1 1 7 9 1 10 3 10
5 10 6 7 10 10 3 2 5 4 6
6 2 4 1 5 7 NA NA 8 4 4
7 7 2 3 1 4 10 NA 8 7 7
8 9 5 8 10 5 3 5 8 3 2
9 9 1 8 7 6 5 NA NA 6 7
10 6 10 8 7 1 1 2 2 5 7
> d %>% mutate_each( funs_( interp( ~replace(., is.na(.),0) ) ) )
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
1 4 8 1 9 6 9 0 8 9 8
2 8 3 6 8 2 1 0 0 6 3
3 6 6 3 0 2 0 0 5 7 7
4 10 6 1 1 7 9 1 10 3 10
5 10 6 7 10 10 3 2 5 4 6
6 2 4 1 5 7 0 0 8 4 4
7 7 2 3 1 4 10 0 8 7 7
8 9 5 8 10 5 3 5 8 3 2
9 9 1 8 7 6 5 0 0 6 7
10 6 10 8 7 1 1 2 2 5 7
我们在这里使用的是标准求值(SE),这就是为什么我们需要在“funs_”上加下划线。我们还使用了lazyeval的interp/~和。引用“我们正在处理的所有东西”,即数据帧。现在有零了!
另一个使用imputeTS包的例子:
library(imputeTS)
na.replace(yourDataframe, 0)
专用函数nafill和setnafill,用于此目的,在data.table中。 只要可用,它们就将列分发到多个线程上进行计算。
library(data.table)
ans_df <- nafill(df, fill=0)
# or even faster, in-place
setnafill(df, fill=0)