我有一个数据帧和一些列有NA值。

我如何将这些NA值替换为零?


当前回答

另一个使用imputeTS包的例子:

library(imputeTS)
na.replace(yourDataframe, 0)

其他回答

dplyr例子:

library(dplyr)

df1 <- df1 %>%
    mutate(myCol1 = if_else(is.na(myCol1), 0, myCol1))

注意:这适用于每个选定的列,如果我们需要对所有列都这样做,请参阅@reidjax的答案使用mutate_each。

另一个与tidyrmethod replace_na兼容的dplyr管道选项,适用于多个列:

require(dplyr)
require(tidyr)

m <- matrix(sample(c(NA, 1:10), 100, replace = TRUE), 10)
d <- as.data.frame(m)

myList <- setNames(lapply(vector("list", ncol(d)), function(x) x <- 0), names(d))

df <- d %>% replace_na(myList)

你可以很容易地限制到例如数字列:

d$str <- c("string", NA)

myList <- myList[sapply(d, is.numeric)]

df <- d %>% replace_na(myList)

DPLYR >= 1.0.0

在dplyr的新版本中:

Across()取代了一系列“作用域变量”,如summarise_at()、summarise_if()和summarise_all()。

df <- data.frame(a = c(LETTERS[1:3], NA), b = c(NA, 1:3))

library(tidyverse)

df %>% 
  mutate(across(where(anyNA), ~ replace_na(., 0)))

  a b
1 A 0
2 B 1
3 C 2
4 0 3

这段代码将强制0为第一列中的字符。要根据列类型替换NA,您可以使用类似呜呜声的公式,其中:

df %>% 
  mutate(across(where(~ anyNA(.) & is.character(.)), ~ replace_na(., "0")))

这个从Datacamp中提取的简单函数可以帮助:

replace_missings <- function(x, replacement) {
  is_miss <- is.na(x)
  x[is_miss] <- replacement

  message(sum(is_miss), " missings replaced by the value ", replacement)
  x
}

Then

replace_missings(df, replacement = 0)

另一个使用imputeTS包的例子:

library(imputeTS)
na.replace(yourDataframe, 0)