我有一个数据帧和一些列有NA值。
我如何将这些NA值替换为零?
我有一个数据帧和一些列有NA值。
我如何将这些NA值替换为零?
当前回答
这并不是一个新的解决方案,但是我喜欢编写内联lambdas来处理我无法让包完成的事情。在这种情况下,
df %>%
(function(x) { x[is.na(x)] <- 0; return(x) })
因为R不像你在Python中可能看到的那样“通过对象传递”,所以这个解决方案不会修改原始变量df,因此与大多数其他解决方案一样,但是不需要对特定包的复杂知识有太多的要求。
注意函数定义周围的括号!虽然对我来说这似乎有点多余,因为函数定义是用花括号括起来的,但对于magrittr,需要在括号内定义内联函数。
其他回答
不需要使用任何库。
df <- data.frame(a=c(1,3,5,NA))
df$a[is.na(df$a)] <- 0
df
在data.frame中,不需要通过突变来创建新列。
library(tidyverse)
k <- c(1,2,80,NA,NA,51)
j <- c(NA,NA,3,31,12,NA)
df <- data.frame(k,j)%>%
replace_na(list(j=0))#convert only column j, for example
结果
k j
1 0
2 0
80 3
NA 31
NA 12
51 0
如果我们试图在导出时替换NAs,例如写入csv时,那么我们可以使用:
write.csv(data, "data.csv", na = "0")
我想添加一个使用流行的Hmisc包的下一个解决方案。
library(Hmisc)
data(airquality)
# imputing with 0 - all columns
# although my favorite one for simple imputations is Hmisc::impute(x, "random")
> dd <- data.frame(Map(function(x) Hmisc::impute(x, 0), airquality))
> str(dd[[1]])
'impute' Named num [1:153] 41 36 12 18 0 28 23 19 8 0 ...
- attr(*, "names")= chr [1:153] "1" "2" "3" "4" ...
- attr(*, "imputed")= int [1:37] 5 10 25 26 27 32 33 34 35 36 ...
> dd[[1]][1:10]
1 2 3 4 5 6 7 8 9 10
41 36 12 18 0* 28 23 19 8 0*
可以看到,所有的imputation元数据都被分配为属性。因此它可以在以后使用。
见我在@gsk3 answer中的评论。举个简单的例子:
> m <- matrix(sample(c(NA, 1:10), 100, replace = TRUE), 10)
> d <- as.data.frame(m)
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
1 4 3 NA 3 7 6 6 10 6 5
2 9 8 9 5 10 NA 2 1 7 2
3 1 1 6 3 6 NA 1 4 1 6
4 NA 4 NA 7 10 2 NA 4 1 8
5 1 2 4 NA 2 6 2 6 7 4
6 NA 3 NA NA 10 2 1 10 8 4
7 4 4 9 10 9 8 9 4 10 NA
8 5 8 3 2 1 4 5 9 4 7
9 3 9 10 1 9 9 10 5 3 3
10 4 2 2 5 NA 9 7 2 5 5
> d[is.na(d)] <- 0
> d
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
1 4 3 0 3 7 6 6 10 6 5
2 9 8 9 5 10 0 2 1 7 2
3 1 1 6 3 6 0 1 4 1 6
4 0 4 0 7 10 2 0 4 1 8
5 1 2 4 0 2 6 2 6 7 4
6 0 3 0 0 10 2 1 10 8 4
7 4 4 9 10 9 8 9 4 10 0
8 5 8 3 2 1 4 5 9 4 7
9 3 9 10 1 9 9 10 5 3 3
10 4 2 2 5 0 9 7 2 5 5
没有必要去申请。=)
EDIT
你也应该看看norm package。它有很多很好的缺失数据分析功能。=)