我有一个数据帧和一些列有NA值。

我如何将这些NA值替换为零?


当前回答

不需要使用任何库。

df <- data.frame(a=c(1,3,5,NA))

df$a[is.na(df$a)] <- 0

df

其他回答

DPLYR >= 1.0.0

在dplyr的新版本中:

Across()取代了一系列“作用域变量”,如summarise_at()、summarise_if()和summarise_all()。

df <- data.frame(a = c(LETTERS[1:3], NA), b = c(NA, 1:3))

library(tidyverse)

df %>% 
  mutate(across(where(anyNA), ~ replace_na(., 0)))

  a b
1 A 0
2 B 1
3 C 2
4 0 3

这段代码将强制0为第一列中的字符。要根据列类型替换NA,您可以使用类似呜呜声的公式,其中:

df %>% 
  mutate(across(where(~ anyNA(.) & is.character(.)), ~ replace_na(., "0")))

你可以使用replace()

例如:

> x <- c(-1,0,1,0,NA,0,1,1)
> x1 <- replace(x,5,1)
> x1
[1] -1  0  1  0  1  0  1  1

> x1 <- replace(x,5,mean(x,na.rm=T))
> x1
[1] -1.00  0.00  1.00  0.00  0.29  0.00 1.00  1.00

这是一个更灵活的解决方案。不管你的数据帧有多大,它都能工作,或者用0或0来表示0。

library(dplyr) # make sure dplyr ver is >= 1.00

df %>%
    mutate(across(everything(), na_if, 0)) # if 0 is indicated by `zero` then replace `0` with `zero`

如果你想在因子变量中替换NAs,这可能是有用的:

n <- length(levels(data.vector))+1

data.vector <- as.numeric(data.vector)
data.vector[is.na(data.vector)] <- n
data.vector <- as.factor(data.vector)
levels(data.vector) <- c("level1","level2",...,"leveln", "NAlevel") 

它将因子向量转换为数值向量,并添加另一个人工数值因子水平,然后将其转换回具有您选择的额外“na水平”的因子向量。

见我在@gsk3 answer中的评论。举个简单的例子:

> m <- matrix(sample(c(NA, 1:10), 100, replace = TRUE), 10)
> d <- as.data.frame(m)
   V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
1   4  3 NA  3  7  6  6 10  6   5
2   9  8  9  5 10 NA  2  1  7   2
3   1  1  6  3  6 NA  1  4  1   6
4  NA  4 NA  7 10  2 NA  4  1   8
5   1  2  4 NA  2  6  2  6  7   4
6  NA  3 NA NA 10  2  1 10  8   4
7   4  4  9 10  9  8  9  4 10  NA
8   5  8  3  2  1  4  5  9  4   7
9   3  9 10  1  9  9 10  5  3   3
10  4  2  2  5 NA  9  7  2  5   5

> d[is.na(d)] <- 0

> d
   V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
1   4  3  0  3  7  6  6 10  6   5
2   9  8  9  5 10  0  2  1  7   2
3   1  1  6  3  6  0  1  4  1   6
4   0  4  0  7 10  2  0  4  1   8
5   1  2  4  0  2  6  2  6  7   4
6   0  3  0  0 10  2  1 10  8   4
7   4  4  9 10  9  8  9  4 10   0
8   5  8  3  2  1  4  5  9  4   7
9   3  9 10  1  9  9 10  5  3   3
10  4  2  2  5  0  9  7  2  5   5

没有必要去申请。=)

EDIT

你也应该看看norm package。它有很多很好的缺失数据分析功能。=)