我有一个数据帧和一些列有NA值。

我如何将这些NA值替换为零?


当前回答

不需要使用任何库。

df <- data.frame(a=c(1,3,5,NA))

df$a[is.na(df$a)] <- 0

df

其他回答

这并不是一个新的解决方案,但是我喜欢编写内联lambdas来处理我无法让包完成的事情。在这种情况下,

df %>%
   (function(x) { x[is.na(x)] <- 0; return(x) })

因为R不像你在Python中可能看到的那样“通过对象传递”,所以这个解决方案不会修改原始变量df,因此与大多数其他解决方案一样,但是不需要对特定包的复杂知识有太多的要求。

注意函数定义周围的括号!虽然对我来说这似乎有点多余,因为函数定义是用花括号括起来的,但对于magrittr,需要在括号内定义内联函数。

DPLYR >= 1.0.0

在dplyr的新版本中:

Across()取代了一系列“作用域变量”,如summarise_at()、summarise_if()和summarise_all()。

df <- data.frame(a = c(LETTERS[1:3], NA), b = c(NA, 1:3))

library(tidyverse)

df %>% 
  mutate(across(where(anyNA), ~ replace_na(., 0)))

  a b
1 A 0
2 B 1
3 C 2
4 0 3

这段代码将强制0为第一列中的字符。要根据列类型替换NA,您可以使用类似呜呜声的公式,其中:

df %>% 
  mutate(across(where(~ anyNA(.) & is.character(.)), ~ replace_na(., "0")))

也可以使用tidyr::replace_na。

    library(tidyr)
    df <- df %>% mutate_all(funs(replace_na(.,0)))

编辑(dplyr > 1.0.0):

df %>% mutate(across(everything(), .fns = ~replace_na(.,0))) 

这个从Datacamp中提取的简单函数可以帮助:

replace_missings <- function(x, replacement) {
  is_miss <- is.na(x)
  x[is_miss] <- replacement

  message(sum(is_miss), " missings replaced by the value ", replacement)
  x
}

Then

replace_missings(df, replacement = 0)

要替换一个数据帧中的所有NAs,你可以使用:

Df %>% replace(is.na(.), 0)