我有一个数据帧和一些列有NA值。
我如何将这些NA值替换为零?
我有一个数据帧和一些列有NA值。
我如何将这些NA值替换为零?
当前回答
在dplyr 0.5.0中,你可以使用coalesce函数,通过做coalesce(vec, 0)可以很容易地集成到%>%管道中。这将把vec中的所有NAs替换为0:
假设我们有一个带NAs的数据帧:
library(dplyr)
df <- data.frame(v = c(1, 2, 3, NA, 5, 6, 8))
df
# v
# 1 1
# 2 2
# 3 3
# 4 NA
# 5 5
# 6 6
# 7 8
df %>% mutate(v = coalesce(v, 0))
# v
# 1 1
# 2 2
# 3 3
# 4 0
# 5 5
# 6 6
# 7 8
其他回答
这个从Datacamp中提取的简单函数可以帮助:
replace_missings <- function(x, replacement) {
is_miss <- is.na(x)
x[is_miss] <- replacement
message(sum(is_miss), " missings replaced by the value ", replacement)
x
}
Then
replace_missings(df, replacement = 0)
dplyr例子:
library(dplyr)
df1 <- df1 %>%
mutate(myCol1 = if_else(is.na(myCol1), 0, myCol1))
注意:这适用于每个选定的列,如果我们需要对所有列都这样做,请参阅@reidjax的答案使用mutate_each。
对于单个向量:
x <- c(1,2,NA,4,5)
x[is.na(x)] <- 0
对于data.frame,在上面的基础上创建一个函数,然后将其应用到列上。
下次请提供一个可重复的例子,具体如下:
如何制作一个优秀的R可复制示例?
不需要使用任何库。
df <- data.frame(a=c(1,3,5,NA))
df$a[is.na(df$a)] <- 0
df
另一个选项使用sapply将所有NA替换为零。下面是一些可重复的代码(数据来自@aL3xa):
set.seed(7) # for reproducibility
m <- matrix(sample(c(NA, 1:10), 100, replace = TRUE), 10)
d <- as.data.frame(m)
d
#> V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
#> 1 9 7 5 5 7 7 4 6 6 7
#> 2 2 5 10 7 8 9 8 8 1 8
#> 3 6 7 4 10 4 9 6 8 NA 10
#> 4 1 10 3 7 5 7 7 7 NA 8
#> 5 9 9 10 NA 7 10 1 5 NA 5
#> 6 5 2 5 10 8 1 1 5 10 3
#> 7 7 3 9 3 1 6 7 3 1 10
#> 8 7 7 6 8 4 4 5 NA 8 7
#> 9 2 1 1 2 7 5 9 10 9 3
#> 10 7 5 3 4 9 2 7 6 NA 5
d[sapply(d, \(x) is.na(x))] <- 0
d
#> V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
#> 1 9 7 5 5 7 7 4 6 6 7
#> 2 2 5 10 7 8 9 8 8 1 8
#> 3 6 7 4 10 4 9 6 8 0 10
#> 4 1 10 3 7 5 7 7 7 0 8
#> 5 9 9 10 0 7 10 1 5 0 5
#> 6 5 2 5 10 8 1 1 5 10 3
#> 7 7 3 9 3 1 6 7 3 1 10
#> 8 7 7 6 8 4 4 5 0 8 7
#> 9 2 1 1 2 7 5 9 10 9 3
#> 10 7 5 3 4 9 2 7 6 0 5
使用reprex v2.0.2创建于2023-01-15
请注意:从R 4.1.0开始,您可以使用\(x)而不是函数(x)。