我安装了Anaconda(使用Python 2.7),并在一个名为Tensorflow的环境中安装了Tensorflow。我可以在这个环境中成功导入Tensorflow。

问题是Jupyter Notebook无法识别我刚刚创建的新环境。无论我是从GUI Navigator还是tensorflow env中的命令行启动Jupyter Notebook,菜单中只有一个名为Python [Root]的内核,并且不能导入tensorflow。当然,我多次点击这个选项,保存文件,重新打开,但这些都没有帮助。

奇怪的是,当我打开Jupyter首页上的Conda标签时,我可以看到这两个环境。但是当我打开文件选项卡,并尝试新建一个笔记本时,我仍然只有一个内核。

我看了这个问题: 连接Conda环境与Jupyter Notebook 但是在我的电脑上没有~/Library/Jupyter/kernels这样的目录!这个Jupyter目录只有一个称为runtime的子目录。

我真的很困惑。Conda环境应该自动成为内核吗?(我在https://ipython.readthedocs.io/en/stable/install/kernel_install.html上手动设置了内核,但被告知没有找到ipykernel。)


当前回答

如果您的环境没有显示,请确保您已经安装

nb_conda_kernels在Jupyter环境中 你想要访问的Python环境中的ipykernel和ipywidgets(注意,ipywidgets是为了启用一些Juptyer功能,而不是环境可见性,请参阅相关文档)。

Anaconda的文档表明

nb_conda_kernels should be installed in the environment from which you run Jupyter Notebook or JupyterLab. This might be your base conda environment, but it need not be. For instance, if the environment notebook_env contains the notebook package, then you would run conda install -n notebook_env nb_conda_kernels Any other environments you wish to access in your notebooks must have an appropriate kernel package installed. For instance, to access a Python environment, it must have the ipykernel package; e.g. conda install -n python_env ipykernel To utilize an R environment, it must have the r-irkernel package; e.g. conda install -n r_env r-irkernel For other languages, their corresponding kernels must be installed.

除了Python,通过安装适当的*内核包,Jupyter可以访问大量其他语言的内核,包括R、Julia、Scala/Spark、JavaScript、bash、Octave,甚至MATLAB。


请注意,在最初发布这篇文章的时候,可能是nb_conda还不支持Python 3.6环境造成的。

如果其他解决方案无法让Jupyter识别其他conda环境,则始终可以在特定环境中安装和运行Jupyter。不过,你可能无法从木星内部看到或切换到其他环境。

$ conda create -n py36_test -y python=3.6 jupyter
$ source activate py36_test
(py36_test) $ which jupyter
/home/schowell/anaconda3/envs/py36_test/bin/jupyter
(py36_test) $ jupyter notebook

注意,我在这个笔记本中运行的是Python 3.6.1:

注意,如果在许多环境中都这样做,那么在每个环境中安装Jupyter所增加的存储空间可能是不可取的(取决于您的系统)。

其他回答

我在使用vscode服务器时遇到了这个问题。 在名为“base”的conda环境中,我安装了1.2.0版本的opennmt-py,但我想在conda环境“opennmt2”中运行jupyter notebook,其中包含使用opennmt-py 2.0的代码。 我通过在conda(opennmt2)中重新安装jupyter解决了这个问题。

conda install jupyter

重新安装后,在opennmt2环境中执行jupyter notebook将执行新安装的jupyter

where jupyter 
/root/miniconda3/envs/opennmt2/bin/jupyter
/root/miniconda3/bin/jupyter

在我的例子中,使用Windows 10和conda 4.6.11,通过运行这些命令

conda install nb_conda

conda install -c conda-forge nb_conda_kernels

在我使用conda Jupyter笔记本从同一命令行打开Jupyter后,从终端同时有环境活动并没有做这项工作。

显然,解决方案是从Anaconda Navigator打开Jupyter,进入我的环境:打开Anaconda Navigator,在Environments中选择环境,按下所选环境的“播放”按钮,并选择“用Jupyter Notebook打开”。

Anaconda Navigator中的环境从选定的环境中运行Jupyter

这是一个旧线程,但是在Anaconda提示符中运行它,在我感兴趣的环境中,对我来说是有效的:

ipython kernel install --name "myenvname" --user

恼人的是,在你的tensorflow环境中,你可以运行jupyter notebook,而无需在该环境中安装jupyter。你就跑

(tensorflow) $ conda install jupyter

tensorflow环境现在应该在Jupyter notebook中可见,在任何conda环境中启动,类似于Python [conda env:tensorflow]。

This has been so frustrating, My problem was that within a newly constructed conda python36 environment, jupyter refused to load “seaborn” - even though seaborn was installed within that environment. It seemed to be able to import plenty of other files from the same environment — for example numpy and pandas but just not seaborn. I tried many of the fixes suggested here and on other threads without success. Until I realised that Jupyter was not running kernel python from within that environment but running the system python as kernel. Even though a decent looking kernel and kernel.json were already present in the environment. It was only after reading this part of the ipython documentation: https://ipython.readthedocs.io/en/latest/install/kernel_install.html#kernels-for-different-environments and using these commands:

source activate other-env
python -m ipykernel install --user --name other-env --display-name "Python (other-env)"

我能让一切顺利进行。(我实际上没有使用-user变量)。

我还没有想到的一件事是如何将默认的python设置为“python (other-env)”。目前,从主屏幕打开的现有.ipynb文件将使用系统python。我必须使用内核菜单“更改内核”来选择环境python。