我安装了Anaconda(使用Python 2.7),并在一个名为Tensorflow的环境中安装了Tensorflow。我可以在这个环境中成功导入Tensorflow。
问题是Jupyter Notebook无法识别我刚刚创建的新环境。无论我是从GUI Navigator还是tensorflow env中的命令行启动Jupyter Notebook,菜单中只有一个名为Python [Root]的内核,并且不能导入tensorflow。当然,我多次点击这个选项,保存文件,重新打开,但这些都没有帮助。
奇怪的是,当我打开Jupyter首页上的Conda标签时,我可以看到这两个环境。但是当我打开文件选项卡,并尝试新建一个笔记本时,我仍然只有一个内核。
我看了这个问题:
连接Conda环境与Jupyter Notebook
但是在我的电脑上没有~/Library/Jupyter/kernels这样的目录!这个Jupyter目录只有一个称为runtime的子目录。
我真的很困惑。Conda环境应该自动成为内核吗?(我在https://ipython.readthedocs.io/en/stable/install/kernel_install.html上手动设置了内核,但被告知没有找到ipykernel。)
This has been so frustrating, My problem was that within a newly constructed conda python36 environment, jupyter refused to load “seaborn” - even though seaborn was installed within that environment. It seemed to be able to import plenty of other files from the same environment — for example numpy and pandas but just not seaborn. I tried many of the fixes suggested here and on other threads without success. Until I realised that Jupyter was not running kernel python from within that environment but running the system python as kernel. Even though a decent looking kernel and kernel.json were already present in the environment. It was only after reading this part of the ipython documentation:
https://ipython.readthedocs.io/en/latest/install/kernel_install.html#kernels-for-different-environments
and using these commands:
source activate other-env
python -m ipykernel install --user --name other-env --display-name "Python (other-env)"
我能让一切顺利进行。(我实际上没有使用-user变量)。
我还没有想到的一件事是如何将默认的python设置为“python (other-env)”。目前,从主屏幕打开的现有.ipynb文件将使用系统python。我必须使用内核菜单“更改内核”来选择环境python。
我也遇到了同样的问题,我的新conda环境myenv不能被选为内核或新笔记本。在env中运行jupter notebook也得到了相同的结果。
我的解决方案,以及我了解到Jupyter笔记本如何识别conda-envs和内核:
使用conda将jupyter和ipython安装到myenv:
conda install -n myenv ipython jupyter
在那之后,在任何env之外运行jupter notebook时,将myenv与我以前的环境一起列为内核。
Python [conda env:old]
Python [conda env:myenv]
启动环境后运行笔记本:
source activate myenv
jupyter notebook
隐藏所有其他环境内核,只显示我的语言内核:
python 2
python 3
R
我们在这个问题上做了很多努力,以下是对我们有效的方法。如果你使用conda-forge通道,确保你使用的是从conda-forge更新的包是很重要的,即使是在你的Miniconda根环境中。
所以安装Miniconda,然后做:
conda config --add channels conda-forge --force
conda update --all -y
conda install nb_conda_kernels -y
conda env create -f custom_env.yml -q --force
jupyter notebook
你的自定义环境将作为可用的内核显示在Jupyter中,只要你的custom_env中列出了ipykernel以供安装。Yml文件,就像这个例子:
name: bqplot
channels:
- conda-forge
- defaults
dependencies:
- python>=3.6
- bqplot
- ipykernel
为了证明它适用于许多自定义环境,这里有一个Windows屏幕截图: