我总是记不住电话号码。我需要一个记忆规则。


当前回答

max_signed_32_bit_num = 1 << 31 - 1;  // alternatively ~(1 << 31)

编译器无论如何都应该优化它。

我更喜欢1 << 31 - 1

0x7fffffff因为你不需要计数fs

Unsigned (pow(2,31)) - 1,因为你不需要<math.h>

其他回答

这就是我如何记住2147483647的:

214 -因为2.14近似于pi-1 48 = 6*8 64 = 8*8

横向写:

214_48_64_
and insert:
   ^  ^  ^
   7  3  7 - which is Boeing's airliner jet (thanks, sgorozco)

现在你得到了2147483647。

希望这能有所帮助。

一般来说,你可以做一个简单的操作,它反映了Int32的本质,用1填充所有可用的位-这是你可以很容易地保存在你的内存中的东西。它在大多数语言中的工作方式基本相同,但我以Python为例:

max = 0
bits = [1] * 31 # Generate a "bit array" filled with 1's
for bit in bits:
    max = (max << 1) | bit
# max is now 2147483647

对于unsigned Int32,将其设置为32而不是31个1。

但因为有一些更冒险的方法,我开始考虑公式,只是为了好玩…

公式1(如果没有给出运算符,则将数字连在一起)

a = 4 b = 8 巴/ a ab-1 接 ab-a-b ab-1

Python quickcheck

a = 4
b = 8
ab = int('%d%d' % (a, b))
ba = int('%d%d' % (b, a))
'%d%d%d%d%d' % (ba/a, ab-1, ab, ab-a-b, ab-1)
# gives '2147483647'

公式2

X = 48 x / 2 - 3 x - 1 x x * 3/4 x - 1

Python quickcheck

x = 48
'%d%d%d%d%d' % (x/2-3, x-1, x, x*3/4, x-1) 
# gives '2147483647'

这就是我记住2147483647的方法

在遥远的大草原上,擎天柱三人对着四十个七分咒

2 - To
1 - A
4 - Far
7 - Savannah
4 - Quarter
8 - Optimus
3 - Trio
6 - Hexed
4 - Forty
7 - Septenary
2^(x+y) = 2^x * 2^y

2^10 ~ 1,000
2^20 ~ 1,000,000
2^30 ~ 1,000,000,000
2^40 ~ 1,000,000,000,000
(etc.)

2^1 = 2
2^2 = 4
2^3 = 8
2^4 = 16
2^5 = 32
2^6 = 64
2^7 = 128
2^8 = 256
2^9 = 512

2^31 (signed int max)等于2^30(约10亿)乘以2^1(2)也就是20亿。2^32等于2^30 * 2^2,大约是40亿。这种近似方法甚至可以精确到2^64左右(误差增长到15%左右)。

如果你需要一个确切的答案,那么你应该打开计算器。

方便的字对齐容量近似:

2^16 ~= 64千// uint16 2^32 ~= 40亿// uint32, IPv4, unixtime 2^64 ~= 16 quintillion(又名160亿billion或1600万trillion) // uint64, "bigint" 2^128 ~= 256quintillion quintillion(又名256trillion trillion万亿)// IPv6, GUID

我在c#中做了几个天才的方法,你可以在你的生产环境中利用:

public static int GetIntMaxValueGenius1()
{
    int n = 0;
    while (++n > 0) { }
    return --n;
}

public static int GetIntMaxValueGenius2()
{
    int n = 0;
    try
    {
        while (true)
            n = checked(n + 1);
    }
    catch { }
    return n;
}