我想从一个巨大的集合(1亿条记录)中获得一个随机记录。

最快最有效的方法是什么?

数据已经在那里,没有字段可以生成随机数并获得随机行。


当前回答

有效可靠的方法是:

在每个文档中添加一个名为“random”的字段,并为其分配一个随机值,为该随机字段添加一个索引,如下所示:

让我们假设我们有一个名为“links”的网络链接集合,我们想从它中随机链接:

link = db.links.find().sort({random: 1}).limit(1)[0]

为了确保同一个链接不会第二次弹出,用一个新的随机数更新它的随机场:

db.links.update({random: Math.random()}, link)

其他回答

有效可靠的方法是:

在每个文档中添加一个名为“random”的字段,并为其分配一个随机值,为该随机字段添加一个索引,如下所示:

让我们假设我们有一个名为“links”的网络链接集合,我们想从它中随机链接:

link = db.links.find().sort({random: 1}).limit(1)[0]

为了确保同一个链接不会第二次弹出,用一个新的随机数更新它的随机场:

db.links.update({random: Math.random()}, link)

使用Map/Reduce,您当然可以获得一个随机记录,只是不一定非常有效,这取决于您最终使用的过滤集合的大小。

我已经用5万个文档测试了这个方法(过滤器将其减少到大约3万个),它在Intel i3、16GB ram和SATA3 HDD上执行大约400毫秒……

db.toc_content.mapReduce(
    /* map function */
    function() { emit( 1, this._id ); },

    /* reduce function */
    function(k,v) {
        var r = Math.floor((Math.random()*v.length));
        return v[r];
    },

    /* options */
    {
        out: { inline: 1 },
        /* Filter the collection to "A"ctive documents */
        query: { status: "A" }
    }
);

Map函数简单地创建一个数组,其中包含所有与查询匹配的文档的id。在我的例子中,我测试了5万个可能的文档中的大约3万个。

Reduce函数只是在数组中从0到项数(-1)之间选择一个随机整数,然后从数组中返回该_id。

400ms听起来是一段很长的时间,而且确实如此,如果您有5000万条记录而不是5万条记录,这可能会增加开销,以至于在多用户情况下无法使用。

MongoDB在核心中包含这个功能有一个悬而未决的问题…https://jira.mongodb.org/browse/SERVER-533

如果将这种“随机”选择构建到索引查找中,而不是将id收集到一个数组中然后选择一个,这将非常有帮助。(去投票吧!)

对所有记录进行计数,生成一个0到计数之间的随机数,然后执行:

db.yourCollection.find().limit(-1).skip(yourRandomNumber).next()

在Python中使用pymongo:

import random

def get_random_doc():
    count = collection.count()
    return collection.find()[random.randrange(count)]

下面是一种使用_id的默认ObjectId值和一些数学和逻辑的方法。

// Get the "min" and "max" timestamp values from the _id in the collection and the 
// diff between.
// 4-bytes from a hex string is 8 characters

var min = parseInt(db.collection.find()
        .sort({ "_id": 1 }).limit(1).toArray()[0]._id.str.substr(0,8),16)*1000,
    max = parseInt(db.collection.find()
        .sort({ "_id": -1 })limit(1).toArray()[0]._id.str.substr(0,8),16)*1000,
    diff = max - min;

// Get a random value from diff and divide/multiply be 1000 for The "_id" precision:
var random = Math.floor(Math.floor(Math.random(diff)*diff)/1000)*1000;

// Use "random" in the range and pad the hex string to a valid ObjectId
var _id = new ObjectId(((min + random)/1000).toString(16) + "0000000000000000")

// Then query for the single document:
var randomDoc = db.collection.find({ "_id": { "$gte": _id } })
   .sort({ "_id": 1 }).limit(1).toArray()[0];

这是shell表示法的一般逻辑,很容易适应。

所以在点上:

查找集合中的最小和最大主键值 生成一个位于这些文档的时间戳之间的随机数。 将随机数与最小值相加,然后找到大于或等于该值的第一个文档。

这使用了从“十六进制”的时间戳值中“填充”来形成有效的ObjectId值,因为这就是我们正在寻找的。使用整数作为_id值本质上更简单,但在点中基本思想相同。