我想从一个巨大的集合(1亿条记录)中获得一个随机记录。
最快最有效的方法是什么?
数据已经在那里,没有字段可以生成随机数并获得随机行。
我想从一个巨大的集合(1亿条记录)中获得一个随机记录。
最快最有效的方法是什么?
数据已经在那里,没有字段可以生成随机数并获得随机行。
当前回答
在Mongoose中最好的方法是使用$sample进行聚合调用。 然而,Mongoose并不会将Mongoose文档应用到Aggregation上——尤其是当populate()也被应用的时候。
从数据库中获取一个“精益”数组:
/*
Sample model should be init first
const Sample = mongoose …
*/
const samples = await Sample.aggregate([
{ $match: {} },
{ $sample: { size: 33 } },
]).exec();
console.log(samples); //a lean Array
获取mongoose文档数组:
const samples = (
await Sample.aggregate([
{ $match: {} },
{ $sample: { size: 27 } },
{ $project: { _id: 1 } },
]).exec()
).map(v => v._id);
const mongooseSamples = await Sample.find({ _id: { $in: samples } });
console.log(mongooseSamples); //an Array of mongoose documents
其他回答
在Mongoose中最好的方法是使用$sample进行聚合调用。 然而,Mongoose并不会将Mongoose文档应用到Aggregation上——尤其是当populate()也被应用的时候。
从数据库中获取一个“精益”数组:
/*
Sample model should be init first
const Sample = mongoose …
*/
const samples = await Sample.aggregate([
{ $match: {} },
{ $sample: { size: 33 } },
]).exec();
console.log(samples); //a lean Array
获取mongoose文档数组:
const samples = (
await Sample.aggregate([
{ $match: {} },
{ $sample: { size: 27 } },
{ $project: { _id: 1 } },
]).exec()
).map(v => v._id);
const mongooseSamples = await Sample.find({ _id: { $in: samples } });
console.log(mongooseSamples); //an Array of mongoose documents
我建议使用map/reduce,其中使用map函数只在随机值高于给定概率时发出。
function mapf() {
if(Math.random() <= probability) {
emit(1, this);
}
}
function reducef(key,values) {
return {"documents": values};
}
res = db.questions.mapReduce(mapf, reducef, {"out": {"inline": 1}, "scope": { "probability": 0.5}});
printjson(res.results);
上面的reducef函数可以工作,因为map函数只发出一个键('1')。
“probability”的值在“scope”中定义,当调用mapRreduce(…)
像这样使用mapReduce在分片数据库上也可以使用。
如果你想从db中选择n (m)个文档,你可以这样做:
function mapf() {
if(countSubset == 0) return;
var prob = countSubset / countTotal;
if(Math.random() <= prob) {
emit(1, {"documents": [this]});
countSubset--;
}
countTotal--;
}
function reducef(key,values) {
var newArray = new Array();
for(var i=0; i < values.length; i++) {
newArray = newArray.concat(values[i].documents);
}
return {"documents": newArray};
}
res = db.questions.mapReduce(mapf, reducef, {"out": {"inline": 1}, "scope": {"countTotal": 4, "countSubset": 2}})
printjson(res.results);
其中“countTotal”(m)是数据库中的文档数量,“count子集”(n)是要检索的文档数量。
这种方法可能会在分片数据库上产生一些问题。
您可以选择一个随机时间戳,然后搜索随后创建的第一个对象。 它将只扫描单个文档,尽管它不一定会给您一个统一的分布。
var randRec = function() {
// replace with your collection
var coll = db.collection
// get unixtime of first and last record
var min = coll.find().sort({_id: 1}).limit(1)[0]._id.getTimestamp() - 0;
var max = coll.find().sort({_id: -1}).limit(1)[0]._id.getTimestamp() - 0;
// allow to pass additional query params
return function(query) {
if (typeof query === 'undefined') query = {}
var randTime = Math.round(Math.random() * (max - min)) + min;
var hexSeconds = Math.floor(randTime / 1000).toString(16);
var id = ObjectId(hexSeconds + "0000000000000000");
query._id = {$gte: id}
return coll.find(query).limit(1)
};
}();
MongoDB 3.2更新
3.2在聚合管道中引入了$sample。
还有一篇很好的博客文章是关于如何将其付诸实践的。
对于旧版本(以前的答案)
这实际上是一个功能请求:http://jira.mongodb.org/browse/SERVER-533,但它是在“不会修复”下提交的。
烹饪书中有一个非常好的方法,可以从集合中随机选择一个文档:http://cookbook.mongodb.org/patterns/random-attribute/
套用这个方法,你可以给你的文档分配随机数:
db.docs.save( { key : 1, ..., random : Math.random() } )
然后随机选择一个文档:
rand = Math.random()
result = db.docs.findOne( { key : 2, random : { $gte : rand } } )
if ( result == null ) {
result = db.docs.findOne( { key : 2, random : { $lte : rand } } )
}
同时使用$gte和$lte进行查询,以找到与rand最接近的随机数的文档。
当然你要在随机场上建立索引
db.docs.ensureIndex( { key : 1, random :1 } )
如果您已经在查询一个索引,只需删除它,将random: 1附加到它,然后再次添加它。
我建议给每个对象添加一个随机的int字段。然后你就可以做
findOne({random_field: {$gte: rand()}})
随机选择一个文档。只要确保你ensureIndex({random_field:1})