我想从一个巨大的集合(1亿条记录)中获得一个随机记录。
最快最有效的方法是什么?
数据已经在那里,没有字段可以生成随机数并获得随机行。
我想从一个巨大的集合(1亿条记录)中获得一个随机记录。
最快最有效的方法是什么?
数据已经在那里,没有字段可以生成随机数并获得随机行。
当前回答
现在可以使用聚合了。 例子:
db.users.aggregate(
[ { $sample: { size: 3 } } ]
)
去看医生。
其他回答
对所有记录进行计数,生成一个0到计数之间的随机数,然后执行:
db.yourCollection.find().limit(-1).skip(yourRandomNumber).next()
如果没有数据,这是很困难的。_id字段是什么?它们是mongodb对象id吗?如果是这样,你可以得到最大值和最小值:
lowest = db.coll.find().sort({_id:1}).limit(1).next()._id;
highest = db.coll.find().sort({_id:-1}).limit(1).next()._id;
然后,如果你假设id是均匀分布的(但它们不是,但至少这是一个开始):
unsigned long long L = first_8_bytes_of(lowest)
unsigned long long H = first_8_bytes_of(highest)
V = (H - L) * random_from_0_to_1();
N = L + V;
oid = N concat random_4_bytes();
randomobj = db.coll.find({_id:{$gte:oid}}).limit(1);
对于我来说,我想以随机顺序获得相同的记录,所以我创建了一个用于排序的空数组,然后生成1到7之间的随机数(我有7个字段)。每次我得到一个不同的值,我分配一个不同的随机排序。 这是“外行”,但对我来说很管用。
//generate random number
const randomval = some random value;
//declare sort array and initialize to empty
const sort = [];
//write a conditional if else to get to decide which sort to use
if(randomval == 1)
{
sort.push(...['createdAt',1]);
}
else if(randomval == 2)
{
sort.push(...['_id',1]);
}
....
else if(randomval == n)
{
sort.push(...['n',1]);
}
我的PHP/MongoDB排序/顺序随机解决方案。希望这对大家有所帮助。
注意:我在我的MongoDB集合中有数字ID,引用一个MySQL数据库记录。
首先,我用10个随机生成的数字创建一个数组
$randomNumbers = [];
for($i = 0; $i < 10; $i++){
$randomNumbers[] = rand(0,1000);
}
在我的聚合中,我使用$addField管道操作符结合$arrayElemAt和$mod(模)。模数运算符将给我一个从0到9的数字,然后我用它从随机生成的数字数组中选择一个数字。
$aggregate[] = [
'$addFields' => [
'random_sort' => [ '$arrayElemAt' => [ $randomNumbers, [ '$mod' => [ '$my_numeric_mysql_id', 10 ] ] ] ],
],
];
在此之后,您可以使用Pipeline排序。
$aggregate[] = [
'$sort' => [
'random_sort' => 1
]
];
当我面对类似的解决方案时,我回溯并发现业务请求实际上是为了创建所呈现的库存的某种形式的轮换。在这种情况下,有更好的选择,它们有来自Solr这样的搜索引擎的答案,而不是MongoDB这样的数据存储。
In short, with the requirement to "intelligently rotate" content, what we should do instead of a random number across all of the documents is to include a personal q score modifier. To implement this yourself, assuming a small population of users, you can store a document per user that has the productId, impression count, click-through count, last seen date, and whatever other factors the business finds as being meaningful to compute a q score modifier. When retrieving the set to display, typically you request more documents from the data store than requested by the end user, then apply the q score modifier, take the number of records requested by the end user, then randomize the page of results, a tiny set, so simply sort the documents in the application layer (in memory).
如果用户的范围太大,可以将用户划分为行为组,按行为组而不是按用户进行索引。
如果产品范围足够小,您可以为每个用户创建一个索引。
我发现这种技术效率更高,但更重要的是在创建相关的、有价值的软件解决方案使用体验方面更有效。