我想从一个巨大的集合(1亿条记录)中获得一个随机记录。
最快最有效的方法是什么?
数据已经在那里,没有字段可以生成随机数并获得随机行。
我想从一个巨大的集合(1亿条记录)中获得一个随机记录。
最快最有效的方法是什么?
数据已经在那里,没有字段可以生成随机数并获得随机行。
当前回答
这工作得很好,它是快速的,适用于多个文档,不需要填充rand字段,它最终会填充自己:
向集合上的.rand字段添加索引 使用查找和刷新,如下所示:
// Install packages:
// npm install mongodb async
// Add index in mongo:
// db.ensureIndex('mycollection', { rand: 1 })
var mongodb = require('mongodb')
var async = require('async')
// Find n random documents by using "rand" field.
function findAndRefreshRand (collection, n, fields, done) {
var result = []
var rand = Math.random()
// Append documents to the result based on criteria and options, if options.limit is 0 skip the call.
var appender = function (criteria, options, done) {
return function (done) {
if (options.limit > 0) {
collection.find(criteria, fields, options).toArray(
function (err, docs) {
if (!err && Array.isArray(docs)) {
Array.prototype.push.apply(result, docs)
}
done(err)
}
)
} else {
async.nextTick(done)
}
}
}
async.series([
// Fetch docs with unitialized .rand.
// NOTE: You can comment out this step if all docs have initialized .rand = Math.random()
appender({ rand: { $exists: false } }, { limit: n - result.length }),
// Fetch on one side of random number.
appender({ rand: { $gte: rand } }, { sort: { rand: 1 }, limit: n - result.length }),
// Continue fetch on the other side.
appender({ rand: { $lt: rand } }, { sort: { rand: -1 }, limit: n - result.length }),
// Refresh fetched docs, if any.
function (done) {
if (result.length > 0) {
var batch = collection.initializeUnorderedBulkOp({ w: 0 })
for (var i = 0; i < result.length; ++i) {
batch.find({ _id: result[i]._id }).updateOne({ rand: Math.random() })
}
batch.execute(done)
} else {
async.nextTick(done)
}
}
], function (err) {
done(err, result)
})
}
// Example usage
mongodb.MongoClient.connect('mongodb://localhost:27017/core-development', function (err, db) {
if (!err) {
findAndRefreshRand(db.collection('profiles'), 1024, { _id: true, rand: true }, function (err, result) {
if (!err) {
console.log(result)
} else {
console.error(err)
}
db.close()
})
} else {
console.error(err)
}
})
ps.如何在mongodb问题中找到随机记录被标记为此问题的副本。不同之处在于,这个问题明确地询问单个记录,而另一个问题明确地询问随机文档。
其他回答
我建议给每个对象添加一个随机的int字段。然后你就可以做
findOne({random_field: {$gte: rand()}})
随机选择一个文档。只要确保你ensureIndex({random_field:1})
下面是一种使用_id的默认ObjectId值和一些数学和逻辑的方法。
// Get the "min" and "max" timestamp values from the _id in the collection and the
// diff between.
// 4-bytes from a hex string is 8 characters
var min = parseInt(db.collection.find()
.sort({ "_id": 1 }).limit(1).toArray()[0]._id.str.substr(0,8),16)*1000,
max = parseInt(db.collection.find()
.sort({ "_id": -1 })limit(1).toArray()[0]._id.str.substr(0,8),16)*1000,
diff = max - min;
// Get a random value from diff and divide/multiply be 1000 for The "_id" precision:
var random = Math.floor(Math.floor(Math.random(diff)*diff)/1000)*1000;
// Use "random" in the range and pad the hex string to a valid ObjectId
var _id = new ObjectId(((min + random)/1000).toString(16) + "0000000000000000")
// Then query for the single document:
var randomDoc = db.collection.find({ "_id": { "$gte": _id } })
.sort({ "_id": 1 }).limit(1).toArray()[0];
这是shell表示法的一般逻辑,很容易适应。
所以在点上:
查找集合中的最小和最大主键值 生成一个位于这些文档的时间戳之间的随机数。 将随机数与最小值相加,然后找到大于或等于该值的第一个文档。
这使用了从“十六进制”的时间戳值中“填充”来形成有效的ObjectId值,因为这就是我们正在寻找的。使用整数作为_id值本质上更简单,但在点中基本思想相同。
如果没有数据,这是很困难的。_id字段是什么?它们是mongodb对象id吗?如果是这样,你可以得到最大值和最小值:
lowest = db.coll.find().sort({_id:1}).limit(1).next()._id;
highest = db.coll.find().sort({_id:-1}).limit(1).next()._id;
然后,如果你假设id是均匀分布的(但它们不是,但至少这是一个开始):
unsigned long long L = first_8_bytes_of(lowest)
unsigned long long H = first_8_bytes_of(highest)
V = (H - L) * random_from_0_to_1();
N = L + V;
oid = N concat random_4_bytes();
randomobj = db.coll.find({_id:{$gte:oid}}).limit(1);
下面的聚合操作从集合中随机选择3个文档:
db.users.aggregate ( [{$sample: {size: 3}}] )
https://docs.mongodb.com/manual/reference/operator/aggregation/sample/
如果您使用的是mongoid(文档到对象的包装器),您可以执行以下操作 Ruby。(假设你的模型是User)
User.all.to_a[rand(User.count)]
在我的。irbrc,我有
def rando klass
klass.all.to_a[rand(klass.count)]
end
所以在rails控制台,我可以做,例如,
rando User
rando Article
从任何集合中随机获取文件。