我想从一个巨大的集合(1亿条记录)中获得一个随机记录。

最快最有效的方法是什么?

数据已经在那里,没有字段可以生成随机数并获得随机行。


当前回答

您还可以使用MongoDB的地理空间索引功能来选择与随机数“最近”的文档。

首先,在集合上启用地理空间索引:

db.docs.ensureIndex( { random_point: '2d' } )

用x轴上的随机点创建一堆文档:

for ( i = 0; i < 10; ++i ) {
    db.docs.insert( { key: i, random_point: [Math.random(), 0] } );
}

然后你可以像这样从集合中随机获得一个文档:

db.docs.findOne( { random_point : { $near : [Math.random(), 0] } } )

或者你可以检索几个文档最近的随机点:

db.docs.find( { random_point : { $near : [Math.random(), 0] } } ).limit( 4 )

这只需要一个查询,没有空检查,加上代码干净,简单和灵活。您甚至可以使用地理点的y轴为查询添加第二个随机性维度。

其他回答

我对php的解决方案:

/**
 * Get random docs from Mongo
 * @param $collection
 * @param $where
 * @param $fields
 * @param $limit
 * @author happy-code
 * @url happy-code.com
 */
private function _mongodb_get_random (MongoCollection $collection, $where = array(), $fields = array(), $limit = false) {

    // Total docs
    $count = $collection->find($where, $fields)->count();

    if (!$limit) {
        // Get all docs
        $limit = $count;
    }

    $data = array();
    for( $i = 0; $i < $limit; $i++ ) {

        // Skip documents
        $skip = rand(0, ($count-1) );
        if ($skip !== 0) {
            $doc = $collection->find($where, $fields)->skip($skip)->limit(1)->getNext();
        } else {
            $doc = $collection->find($where, $fields)->limit(1)->getNext();
        }

        if (is_array($doc)) {
            // Catch document
            $data[ $doc['_id']->{'$id'} ] = $doc;
            // Ignore current document when making the next iteration
            $where['_id']['$nin'][] = $doc['_id'];
        }

        // Every iteration catch document and decrease in the total number of document
        $count--;

    }

    return $data;
}

您还可以使用MongoDB的地理空间索引功能来选择与随机数“最近”的文档。

首先,在集合上启用地理空间索引:

db.docs.ensureIndex( { random_point: '2d' } )

用x轴上的随机点创建一堆文档:

for ( i = 0; i < 10; ++i ) {
    db.docs.insert( { key: i, random_point: [Math.random(), 0] } );
}

然后你可以像这样从集合中随机获得一个文档:

db.docs.findOne( { random_point : { $near : [Math.random(), 0] } } )

或者你可以检索几个文档最近的随机点:

db.docs.find( { random_point : { $near : [Math.random(), 0] } } ).limit( 4 )

这只需要一个查询,没有空检查,加上代码干净,简单和灵活。您甚至可以使用地理点的y轴为查询添加第二个随机性维度。

您可以选择随机_id并返回相应的对象:

 db.collection.count( function(err, count){
        db.collection.distinct( "_id" , function( err, result) {
            if (err)
                res.send(err)
            var randomId = result[Math.floor(Math.random() * (count-1))]
            db.collection.findOne( { _id: randomId } , function( err, result) {
                if (err)
                    res.send(err)
                console.log(result)
            })
        })
    })

在这里,你不需要花空间存储随机数字的集合。

我建议使用map/reduce,其中使用map函数只在随机值高于给定概率时发出。

function mapf() {
    if(Math.random() <= probability) {
    emit(1, this);
    }
}

function reducef(key,values) {
    return {"documents": values};
}

res = db.questions.mapReduce(mapf, reducef, {"out": {"inline": 1}, "scope": { "probability": 0.5}});
printjson(res.results);

上面的reducef函数可以工作,因为map函数只发出一个键('1')。

“probability”的值在“scope”中定义,当调用mapRreduce(…)

像这样使用mapReduce在分片数据库上也可以使用。

如果你想从db中选择n (m)个文档,你可以这样做:

function mapf() {
    if(countSubset == 0) return;
    var prob = countSubset / countTotal;
    if(Math.random() <= prob) {
        emit(1, {"documents": [this]}); 
        countSubset--;
    }
    countTotal--;
}

function reducef(key,values) {
    var newArray = new Array();
for(var i=0; i < values.length; i++) {
    newArray = newArray.concat(values[i].documents);
}

return {"documents": newArray};
}

res = db.questions.mapReduce(mapf, reducef, {"out": {"inline": 1}, "scope": {"countTotal": 4, "countSubset": 2}})
printjson(res.results);

其中“countTotal”(m)是数据库中的文档数量,“count子集”(n)是要检索的文档数量。

这种方法可能会在分片数据库上产生一些问题。

在Mongoose中最好的方法是使用$sample进行聚合调用。 然而,Mongoose并不会将Mongoose文档应用到Aggregation上——尤其是当populate()也被应用的时候。

从数据库中获取一个“精益”数组:

/*
Sample model should be init first
const Sample = mongoose …
*/

const samples = await Sample.aggregate([
  { $match: {} },
  { $sample: { size: 33 } },
]).exec();
console.log(samples); //a lean Array

获取mongoose文档数组:

const samples = (
  await Sample.aggregate([
    { $match: {} },
    { $sample: { size: 27 } },
    { $project: { _id: 1 } },
  ]).exec()
).map(v => v._id);

const mongooseSamples = await Sample.find({ _id: { $in: samples } });

console.log(mongooseSamples); //an Array of mongoose documents