我想从一个巨大的集合(1亿条记录)中获得一个随机记录。
最快最有效的方法是什么?
数据已经在那里,没有字段可以生成随机数并获得随机行。
我想从一个巨大的集合(1亿条记录)中获得一个随机记录。
最快最有效的方法是什么?
数据已经在那里,没有字段可以生成随机数并获得随机行。
当前回答
下面的方法比mongo烹饪书解决方案稍慢(在每个文档上添加一个随机键),但是返回分布更均匀的随机文档。与跳过(随机)解决方案相比,它的分布稍微不那么均匀,但在删除文档时要快得多,而且更安全。
function draw(collection, query) {
// query: mongodb query object (optional)
var query = query || { };
query['random'] = { $lte: Math.random() };
var cur = collection.find(query).sort({ rand: -1 });
if (! cur.hasNext()) {
delete query.random;
cur = collection.find(query).sort({ rand: -1 });
}
var doc = cur.next();
doc.random = Math.random();
collection.update({ _id: doc._id }, doc);
return doc;
}
它还要求您添加一个随机的“random”字段到您的文档中,所以不要忘记在创建它们时添加这个:您可能需要初始化您的集合,如Geoffrey所示
function addRandom(collection) {
collection.find().forEach(function (obj) {
obj.random = Math.random();
collection.save(obj);
});
}
db.eval(addRandom, db.things);
基准测试结果
该方法比(ceejayoz)的skip()方法快得多,并且比Michael报告的“cookbook”方法生成更均匀的随机文档:
对于包含1,000,000个元素的集合:
这种方法在我的机器上花费的时间不到1毫秒 skip()方法平均花费180毫秒
cookbook方法将导致大量文档永远不会被选中,因为它们的随机数对它们不利。
该方法将在一段时间内均匀地挑选所有元素。 在我的基准测试中,它只比食谱方法慢了30%。 随机性并不是100%完美的,但是它已经很好了(如果有必要的话还可以进行改进)
这个配方并不完美——正如其他人所指出的那样,完美的解决方案将是内置功能。 然而,对于许多目的来说,这应该是一个很好的折衷方案。
其他回答
对于我来说,我想以随机顺序获得相同的记录,所以我创建了一个用于排序的空数组,然后生成1到7之间的随机数(我有7个字段)。每次我得到一个不同的值,我分配一个不同的随机排序。 这是“外行”,但对我来说很管用。
//generate random number
const randomval = some random value;
//declare sort array and initialize to empty
const sort = [];
//write a conditional if else to get to decide which sort to use
if(randomval == 1)
{
sort.push(...['createdAt',1]);
}
else if(randomval == 2)
{
sort.push(...['_id',1]);
}
....
else if(randomval == n)
{
sort.push(...['n',1]);
}
从MongoDB 3.2版本开始,你可以使用$sample聚合管道操作符从集合中随机获得N个文档:
// Get one random document from the mycoll collection.
db.mycoll.aggregate([{ $sample: { size: 1 } }])
如果你想从集合的筛选子集中选择随机文档,在管道中预先添加$match阶段:
// Get one random document matching {a: 10} from the mycoll collection.
db.mycoll.aggregate([
{ $match: { a: 10 } },
{ $sample: { size: 1 } }
])
正如注释中所指出的,当size大于1时,返回的文档样例中可能有重复项。
下面是一种使用_id的默认ObjectId值和一些数学和逻辑的方法。
// Get the "min" and "max" timestamp values from the _id in the collection and the
// diff between.
// 4-bytes from a hex string is 8 characters
var min = parseInt(db.collection.find()
.sort({ "_id": 1 }).limit(1).toArray()[0]._id.str.substr(0,8),16)*1000,
max = parseInt(db.collection.find()
.sort({ "_id": -1 })limit(1).toArray()[0]._id.str.substr(0,8),16)*1000,
diff = max - min;
// Get a random value from diff and divide/multiply be 1000 for The "_id" precision:
var random = Math.floor(Math.floor(Math.random(diff)*diff)/1000)*1000;
// Use "random" in the range and pad the hex string to a valid ObjectId
var _id = new ObjectId(((min + random)/1000).toString(16) + "0000000000000000")
// Then query for the single document:
var randomDoc = db.collection.find({ "_id": { "$gte": _id } })
.sort({ "_id": 1 }).limit(1).toArray()[0];
这是shell表示法的一般逻辑,很容易适应。
所以在点上:
查找集合中的最小和最大主键值 生成一个位于这些文档的时间戳之间的随机数。 将随机数与最小值相加,然后找到大于或等于该值的第一个文档。
这使用了从“十六进制”的时间戳值中“填充”来形成有效的ObjectId值,因为这就是我们正在寻找的。使用整数作为_id值本质上更简单,但在点中基本思想相同。
MongoDB 3.2更新
3.2在聚合管道中引入了$sample。
还有一篇很好的博客文章是关于如何将其付诸实践的。
对于旧版本(以前的答案)
这实际上是一个功能请求:http://jira.mongodb.org/browse/SERVER-533,但它是在“不会修复”下提交的。
烹饪书中有一个非常好的方法,可以从集合中随机选择一个文档:http://cookbook.mongodb.org/patterns/random-attribute/
套用这个方法,你可以给你的文档分配随机数:
db.docs.save( { key : 1, ..., random : Math.random() } )
然后随机选择一个文档:
rand = Math.random()
result = db.docs.findOne( { key : 2, random : { $gte : rand } } )
if ( result == null ) {
result = db.docs.findOne( { key : 2, random : { $lte : rand } } )
}
同时使用$gte和$lte进行查询,以找到与rand最接近的随机数的文档。
当然你要在随机场上建立索引
db.docs.ensureIndex( { key : 1, random :1 } )
如果您已经在查询一个索引,只需删除它,将random: 1附加到它,然后再次添加它。
没有一个解决方案对我有效。尤其是当缝隙多、集小的时候。 这对我来说很好(在php中):
$count = $collection->count($search);
$skip = mt_rand(0, $count - 1);
$result = $collection->find($search)->skip($skip)->limit(1)->getNext();