我想从一个巨大的集合(1亿条记录)中获得一个随机记录。

最快最有效的方法是什么?

数据已经在那里,没有字段可以生成随机数并获得随机行。


当前回答

下面的方法比mongo烹饪书解决方案稍慢(在每个文档上添加一个随机键),但是返回分布更均匀的随机文档。与跳过(随机)解决方案相比,它的分布稍微不那么均匀,但在删除文档时要快得多,而且更安全。

function draw(collection, query) {
    // query: mongodb query object (optional)
    var query = query || { };
    query['random'] = { $lte: Math.random() };
    var cur = collection.find(query).sort({ rand: -1 });
    if (! cur.hasNext()) {
        delete query.random;
        cur = collection.find(query).sort({ rand: -1 });
    }
    var doc = cur.next();
    doc.random = Math.random();
    collection.update({ _id: doc._id }, doc);
    return doc;
}

它还要求您添加一个随机的“random”字段到您的文档中,所以不要忘记在创建它们时添加这个:您可能需要初始化您的集合,如Geoffrey所示

function addRandom(collection) { 
    collection.find().forEach(function (obj) {
        obj.random = Math.random();
        collection.save(obj);
    }); 
} 
db.eval(addRandom, db.things);

基准测试结果

该方法比(ceejayoz)的skip()方法快得多,并且比Michael报告的“cookbook”方法生成更均匀的随机文档:

对于包含1,000,000个元素的集合:

这种方法在我的机器上花费的时间不到1毫秒 skip()方法平均花费180毫秒

cookbook方法将导致大量文档永远不会被选中,因为它们的随机数对它们不利。

该方法将在一段时间内均匀地挑选所有元素。 在我的基准测试中,它只比食谱方法慢了30%。 随机性并不是100%完美的,但是它已经很好了(如果有必要的话还可以进行改进)

这个配方并不完美——正如其他人所指出的那样,完美的解决方案将是内置功能。 然而,对于许多目的来说,这应该是一个很好的折衷方案。

其他回答

有效可靠的方法是:

在每个文档中添加一个名为“random”的字段,并为其分配一个随机值,为该随机字段添加一个索引,如下所示:

让我们假设我们有一个名为“links”的网络链接集合,我们想从它中随机链接:

link = db.links.find().sort({random: 1}).limit(1)[0]

为了确保同一个链接不会第二次弹出,用一个新的随机数更新它的随机场:

db.links.update({random: Math.random()}, link)

MongoDB 3.2更新

3.2在聚合管道中引入了$sample。

还有一篇很好的博客文章是关于如何将其付诸实践的。

对于旧版本(以前的答案)

这实际上是一个功能请求:http://jira.mongodb.org/browse/SERVER-533,但它是在“不会修复”下提交的。

烹饪书中有一个非常好的方法,可以从集合中随机选择一个文档:http://cookbook.mongodb.org/patterns/random-attribute/

套用这个方法,你可以给你的文档分配随机数:

db.docs.save( { key : 1, ..., random : Math.random() } )

然后随机选择一个文档:

rand = Math.random()
result = db.docs.findOne( { key : 2, random : { $gte : rand } } )
if ( result == null ) {
  result = db.docs.findOne( { key : 2, random : { $lte : rand } } )
}

同时使用$gte和$lte进行查询,以找到与rand最接近的随机数的文档。

当然你要在随机场上建立索引

db.docs.ensureIndex( { key : 1, random :1 } )

如果您已经在查询一个索引,只需删除它,将random: 1附加到它,然后再次添加它。

我建议使用map/reduce,其中使用map函数只在随机值高于给定概率时发出。

function mapf() {
    if(Math.random() <= probability) {
    emit(1, this);
    }
}

function reducef(key,values) {
    return {"documents": values};
}

res = db.questions.mapReduce(mapf, reducef, {"out": {"inline": 1}, "scope": { "probability": 0.5}});
printjson(res.results);

上面的reducef函数可以工作,因为map函数只发出一个键('1')。

“probability”的值在“scope”中定义,当调用mapRreduce(…)

像这样使用mapReduce在分片数据库上也可以使用。

如果你想从db中选择n (m)个文档,你可以这样做:

function mapf() {
    if(countSubset == 0) return;
    var prob = countSubset / countTotal;
    if(Math.random() <= prob) {
        emit(1, {"documents": [this]}); 
        countSubset--;
    }
    countTotal--;
}

function reducef(key,values) {
    var newArray = new Array();
for(var i=0; i < values.length; i++) {
    newArray = newArray.concat(values[i].documents);
}

return {"documents": newArray};
}

res = db.questions.mapReduce(mapf, reducef, {"out": {"inline": 1}, "scope": {"countTotal": 4, "countSubset": 2}})
printjson(res.results);

其中“countTotal”(m)是数据库中的文档数量,“count子集”(n)是要检索的文档数量。

这种方法可能会在分片数据库上产生一些问题。

如果你有一个简单的id键,你可以将所有的id存储在一个数组中,然后随机选择一个id。(Ruby回答):

ids = @coll.find({},fields:{_id:1}).to_a
@coll.find(ids.sample).first

使用Python (pymongo),聚合函数也可以工作。

collection.aggregate([{'$sample': {'size': sample_size }}])

这种方法比对随机数(例如collection.find([random_int]))运行查询要快得多。对于大型收藏来说尤其如此。