我想从一个巨大的集合(1亿条记录)中获得一个随机记录。

最快最有效的方法是什么?

数据已经在那里,没有字段可以生成随机数并获得随机行。


当前回答

我最简单的解决办法是……

db.coll.find()
    .limit(1)
    .skip(Math.floor(Math.random() * 500))
    .next()

你至少有500件收藏品

其他回答

在Python中使用pymongo:

import random

def get_random_doc():
    count = collection.count()
    return collection.find()[random.randrange(count)]

下面的方法比mongo烹饪书解决方案稍慢(在每个文档上添加一个随机键),但是返回分布更均匀的随机文档。与跳过(随机)解决方案相比,它的分布稍微不那么均匀,但在删除文档时要快得多,而且更安全。

function draw(collection, query) {
    // query: mongodb query object (optional)
    var query = query || { };
    query['random'] = { $lte: Math.random() };
    var cur = collection.find(query).sort({ rand: -1 });
    if (! cur.hasNext()) {
        delete query.random;
        cur = collection.find(query).sort({ rand: -1 });
    }
    var doc = cur.next();
    doc.random = Math.random();
    collection.update({ _id: doc._id }, doc);
    return doc;
}

它还要求您添加一个随机的“random”字段到您的文档中,所以不要忘记在创建它们时添加这个:您可能需要初始化您的集合,如Geoffrey所示

function addRandom(collection) { 
    collection.find().forEach(function (obj) {
        obj.random = Math.random();
        collection.save(obj);
    }); 
} 
db.eval(addRandom, db.things);

基准测试结果

该方法比(ceejayoz)的skip()方法快得多,并且比Michael报告的“cookbook”方法生成更均匀的随机文档:

对于包含1,000,000个元素的集合:

这种方法在我的机器上花费的时间不到1毫秒 skip()方法平均花费180毫秒

cookbook方法将导致大量文档永远不会被选中,因为它们的随机数对它们不利。

该方法将在一段时间内均匀地挑选所有元素。 在我的基准测试中,它只比食谱方法慢了30%。 随机性并不是100%完美的,但是它已经很好了(如果有必要的话还可以进行改进)

这个配方并不完美——正如其他人所指出的那样,完美的解决方案将是内置功能。 然而,对于许多目的来说,这应该是一个很好的折衷方案。

我建议使用map/reduce,其中使用map函数只在随机值高于给定概率时发出。

function mapf() {
    if(Math.random() <= probability) {
    emit(1, this);
    }
}

function reducef(key,values) {
    return {"documents": values};
}

res = db.questions.mapReduce(mapf, reducef, {"out": {"inline": 1}, "scope": { "probability": 0.5}});
printjson(res.results);

上面的reducef函数可以工作,因为map函数只发出一个键('1')。

“probability”的值在“scope”中定义,当调用mapRreduce(…)

像这样使用mapReduce在分片数据库上也可以使用。

如果你想从db中选择n (m)个文档,你可以这样做:

function mapf() {
    if(countSubset == 0) return;
    var prob = countSubset / countTotal;
    if(Math.random() <= prob) {
        emit(1, {"documents": [this]}); 
        countSubset--;
    }
    countTotal--;
}

function reducef(key,values) {
    var newArray = new Array();
for(var i=0; i < values.length; i++) {
    newArray = newArray.concat(values[i].documents);
}

return {"documents": newArray};
}

res = db.questions.mapReduce(mapf, reducef, {"out": {"inline": 1}, "scope": {"countTotal": 4, "countSubset": 2}})
printjson(res.results);

其中“countTotal”(m)是数据库中的文档数量,“count子集”(n)是要检索的文档数量。

这种方法可能会在分片数据库上产生一些问题。

您可以选择一个随机时间戳,然后搜索随后创建的第一个对象。 它将只扫描单个文档,尽管它不一定会给您一个统一的分布。

var randRec = function() {
    // replace with your collection
    var coll = db.collection
    // get unixtime of first and last record
    var min = coll.find().sort({_id: 1}).limit(1)[0]._id.getTimestamp() - 0;
    var max = coll.find().sort({_id: -1}).limit(1)[0]._id.getTimestamp() - 0;

    // allow to pass additional query params
    return function(query) {
        if (typeof query === 'undefined') query = {}
        var randTime = Math.round(Math.random() * (max - min)) + min;
        var hexSeconds = Math.floor(randTime / 1000).toString(16);
        var id = ObjectId(hexSeconds + "0000000000000000");
        query._id = {$gte: id}
        return coll.find(query).limit(1)
    };
}();

为了获得确定数量的无重复的随机文档:

first get all ids get size of documents loop geting random index and skip duplicated number_of_docs=7 db.collection('preguntas').find({},{_id:1}).toArray(function(err, arr) { count=arr.length idsram=[] rans=[] while(number_of_docs!=0){ var R = Math.floor(Math.random() * count); if (rans.indexOf(R) > -1) { continue } else { ans.push(R) idsram.push(arr[R]._id) number_of_docs-- } } db.collection('preguntas').find({}).toArray(function(err1, doc1) { if (err1) { console.log(err1); return; } res.send(doc1) }); });