我想从一个巨大的集合(1亿条记录)中获得一个随机记录。

最快最有效的方法是什么?

数据已经在那里,没有字段可以生成随机数并获得随机行。


当前回答

我建议给每个对象添加一个随机的int字段。然后你就可以做

findOne({random_field: {$gte: rand()}}) 

随机选择一个文档。只要确保你ensureIndex({random_field:1})

其他回答

使用Python (pymongo),聚合函数也可以工作。

collection.aggregate([{'$sample': {'size': sample_size }}])

这种方法比对随机数(例如collection.find([random_int]))运行查询要快得多。对于大型收藏来说尤其如此。

对所有记录进行计数,生成一个0到计数之间的随机数,然后执行:

db.yourCollection.find().limit(-1).skip(yourRandomNumber).next()

您还可以使用MongoDB的地理空间索引功能来选择与随机数“最近”的文档。

首先,在集合上启用地理空间索引:

db.docs.ensureIndex( { random_point: '2d' } )

用x轴上的随机点创建一堆文档:

for ( i = 0; i < 10; ++i ) {
    db.docs.insert( { key: i, random_point: [Math.random(), 0] } );
}

然后你可以像这样从集合中随机获得一个文档:

db.docs.findOne( { random_point : { $near : [Math.random(), 0] } } )

或者你可以检索几个文档最近的随机点:

db.docs.find( { random_point : { $near : [Math.random(), 0] } } ).limit( 4 )

这只需要一个查询,没有空检查,加上代码干净,简单和灵活。您甚至可以使用地理点的y轴为查询添加第二个随机性维度。

如果没有数据,这是很困难的。_id字段是什么?它们是mongodb对象id吗?如果是这样,你可以得到最大值和最小值:

lowest = db.coll.find().sort({_id:1}).limit(1).next()._id;
highest = db.coll.find().sort({_id:-1}).limit(1).next()._id;

然后,如果你假设id是均匀分布的(但它们不是,但至少这是一个开始):

unsigned long long L = first_8_bytes_of(lowest)
unsigned long long H = first_8_bytes_of(highest)

V = (H - L) * random_from_0_to_1();
N = L + V;
oid = N concat random_4_bytes();

randomobj = db.coll.find({_id:{$gte:oid}}).limit(1);

为了获得确定数量的无重复的随机文档:

first get all ids get size of documents loop geting random index and skip duplicated number_of_docs=7 db.collection('preguntas').find({},{_id:1}).toArray(function(err, arr) { count=arr.length idsram=[] rans=[] while(number_of_docs!=0){ var R = Math.floor(Math.random() * count); if (rans.indexOf(R) > -1) { continue } else { ans.push(R) idsram.push(arr[R]._id) number_of_docs-- } } db.collection('preguntas').find({}).toArray(function(err1, doc1) { if (err1) { console.log(err1); return; } res.send(doc1) }); });