我想从数据帧中删除一些列。我知道我们可以使用如下方法单独删除它们:
df$x <- NULL
但我希望用更少的命令来做到这一点。
另外,我知道我可以像这样使用整数索引删除列:
df <- df[ -c(1, 3:6, 12) ]
但我担心变量的相对位置可能会改变。
考虑到R的强大功能,我认为可能有一种比逐个删除每一列更好的方法。
我想从数据帧中删除一些列。我知道我们可以使用如下方法单独删除它们:
df$x <- NULL
但我希望用更少的命令来做到这一点。
另外,我知道我可以像这样使用整数索引删除列:
df <- df[ -c(1, 3:6, 12) ]
但我担心变量的相对位置可能会改变。
考虑到R的强大功能,我认为可能有一种比逐个删除每一列更好的方法。
当前回答
提供数据帧和一串逗号分隔的名称来删除:
remove_features <- function(df, features) {
rem_vec <- unlist(strsplit(features, ', '))
res <- df[,!(names(df) %in% rem_vec)]
return(res)
}
用法:
remove_features(iris, "Sepal.Length, Petal.Width")
其他回答
出于兴趣,这标记了R的一个奇怪的多重语法不一致。例如,给定一个两列数据帧:
df <- data.frame(x=1, y=2)
这就给出了一个数据帧
subset(df, select=-y)
但这给出了一个向量
df[,-2]
这些都在?中得到了解释,但这并不是完全预期的行为。至少对我来说不是……
你可以使用一个简单的名字列表:
DF <- data.frame(
x=1:10,
y=10:1,
z=rep(5,10),
a=11:20
)
drops <- c("x","z")
DF[ , !(names(DF) %in% drops)]
或者,你可以把它们列一个列表,并按名字引用它们:
keeps <- c("y", "a")
DF[keeps]
编辑: 对于那些还不熟悉索引函数的drop参数的人,如果你想保留一列作为一个数据帧,你可以:
keeps <- "y"
DF[ , keeps, drop = FALSE]
drop=TRUE(或不提到它)将删除不必要的维度,因此返回一个具有y列值的向量。
我一直在想一定有更好的习语,但对于按名称减法的列,我倾向于这样做:
df <- data.frame(a=1:10, b=1:10, c=1:10, d=1:10)
# return everything except a and c
df <- df[,-match(c("a","c"),names(df))]
df
提供数据帧和一串逗号分隔的名称来删除:
remove_features <- function(df, features) {
rem_vec <- unlist(strsplit(features, ', '))
res <- df[,!(names(df) %in% rem_vec)]
return(res)
}
用法:
remove_features(iris, "Sepal.Length, Petal.Width")
如果您希望通过引用删除列并避免与data.frames相关的内部复制,则可以使用数据。表包和函数:=
您可以将字符向量名称传递到:=运算符的左侧,并将NULL作为RHS。
library(data.table)
df <- data.frame(a=1:10, b=1:10, c=1:10, d=1:10)
DT <- data.table(df)
# or more simply DT <- data.table(a=1:10, b=1:10, c=1:10, d=1:10) #
DT[, c('a','b') := NULL]
如果希望将名称预定义为[调用之外的字符向量,请将对象名称包装在()或{}中,以强制LHS在调用范围内计算,而不是作为DT范围内的名称。
del <- c('a','b')
DT <- data.table(a=1:10, b=1:10, c=1:10, d=1:10)
DT[, (del) := NULL]
DT <- <- data.table(a=1:10, b=1:10, c=1:10, d=1:10)
DT[, {del} := NULL]
# force or `c` would also work.
您也可以使用set,这避免了[.data]的开销。表,也适用于data.frames!
df <- data.frame(a=1:10, b=1:10, c=1:10, d=1:10)
DT <- data.table(df)
# drop `a` from df (no copying involved)
set(df, j = 'a', value = NULL)
# drop `b` from DT (no copying involved)
set(DT, j = 'b', value = NULL)