如何找到在Linux上运行的C++应用程序中运行缓慢的代码区域?
当前回答
编译和链接代码并运行可执行文件时,请使用-pg标志。执行此程序时,分析数据收集在文件a.out中。有两种不同类型的分析
1-平面轮廓:通过运行命令gprog--flat profile a.out,可以获得以下数据-该功能所花费的总时间的百分比,-在包括和排除对子函数的调用的函数中花费了多少秒,-呼叫的数量,-每次通话的平均时间。
2-图形分析使用命令gprof--graph a.out获取每个函数的以下数据,其中包括-在每个部分中,一个函数都标有索引编号。-在函数上方,有一个调用该函数的函数列表。-在函数下面,有一个函数调用的函数列表。
要获取更多信息,请查看https://sourceware.org/binutils/docs-2.32/gprof/
其他回答
我假设你在使用GCC。标准的解决方案是使用gprof进行分析。
在分析之前,请确保将-pg添加到编译中:
cc -o myprog myprog.c utils.c -g -pg
我还没有尝试过,但我听到了关于谷歌perftools的好消息。这绝对值得一试。
这里有相关问题。
如果gprof不适合您,还有一些流行语:Valgrind、Intel VTune、Sun DTrace。
如果没有一些选项,运行valgrind--tool=callgrind的答案并不完全。我们通常不希望在Valgrind下描述10分钟的缓慢启动时间,而希望在执行某些任务时描述我们的程序。
这就是我的建议。首先运行程序:
valgrind --tool=callgrind --dump-instr=yes -v --instr-atstart=no ./binary > tmp
现在,当它工作并且我们想要开始评测时,我们应该在另一个窗口中运行:
callgrind_control -i on
这将打开分析。若要关闭并停止整个任务,我们可以使用:
callgrind_control -k
现在,我们在当前目录中有一些名为callgrind.out.*的文件。要查看分析结果,请使用:
kcachegrind callgrind.out.*
我建议在下一个窗口中单击“Self”列标题,否则它会显示“main()”是最耗时的任务。“Self”显示每个函数本身花费的时间,而不是与依赖项一起花费的时间。
您可以使用iprof库:
https://gitlab.com/Neurochrom/iprof
https://github.com/Neurochrom/iprof
它是跨平台的,允许您不实时测量应用程序的性能。您甚至可以将其与实时图表相结合。完整免责声明:我是作者。
在工作中,我们有一个非常好的工具,它可以帮助我们监控我们想要的日程安排。这已多次有用。
它是用C++编写的,必须根据您的需要进行定制。不幸的是,我不能共享代码,只有概念。您使用一个包含时间戳和事件ID的“大”易失性缓冲区,可以在死后或停止日志系统后转储(例如,将其转储到文件中)。
您检索包含所有数据的所谓大缓冲区,一个小接口解析它并显示带有名称(up/down+value)的事件,就像示波器使用颜色(在.hpp文件中配置)所做的那样。
您可以自定义生成的事件数量,以仅关注您所需的内容。它帮助我们解决了调度问题,同时根据每秒记录的事件数量消耗了所需的CPU数量。
您需要3个文件:
toolname.hpp // interface
toolname.cpp // code
tool_events_id.hpp // Events ID
其概念是在tool_events_id.hpp中定义如下事件:
// EVENT_NAME ID BEGIN_END BG_COLOR NAME
#define SOCK_PDU_RECV_D 0x0301 //@D00301 BGEEAAAA # TX_PDU_Recv
#define SOCK_PDU_RECV_F 0x0302 //@F00301 BGEEAAAA # TX_PDU_Recv
您还可以在toolname.hpp中定义一些函数:
#define LOG_LEVEL_ERROR 0
#define LOG_LEVEL_WARN 1
// ...
void init(void);
void probe(id,payload);
// etc
代码中可以使用的任何位置:
toolname<LOG_LEVEL>::log(EVENT_NAME,VALUE);
probe函数使用几条装配线尽快检索时钟时间戳,然后在缓冲区中设置一个条目。我们还有一个原子增量来安全地找到存储日志事件的索引。当然,缓冲区是圆形的。
希望这个想法不会因为缺少示例代码而混淆。
还值得一提的是
HPC工具包(http://hpctoolkit.org/)-开源,适用于并行程序,并具有一个GUI,可通过该GUI以多种方式查看结果英特尔VTune(https://software.intel.com/en-us/vtune)-如果你有英特尔编译器,这很好τ(http://www.cs.uoregon.edu/research/tau/home.php)
我使用过HPCToolkit和VTune,它们在寻找帐篷中的长极点方面非常有效,并且不需要重新编译代码(除了必须在CMake中使用-g-O或RelWithDebInfo类型的内置来获得有意义的输出)。我听说TAU的能力类似。