如何找到在Linux上运行的C++应用程序中运行缓慢的代码区域?


当前回答

编译和链接代码并运行可执行文件时,请使用-pg标志。执行此程序时,分析数据收集在文件a.out中。有两种不同类型的分析

1-平面轮廓:通过运行命令gprog--flat profile a.out,可以获得以下数据-该功能所花费的总时间的百分比,-在包括和排除对子函数的调用的函数中花费了多少秒,-呼叫的数量,-每次通话的平均时间。

2-图形分析使用命令gprof--graph a.out获取每个函数的以下数据,其中包括-在每个部分中,一个函数都标有索引编号。-在函数上方,有一个调用该函数的函数列表。-在函数下面,有一个函数调用的函数列表。

要获取更多信息,请查看https://sourceware.org/binutils/docs-2.32/gprof/

其他回答

我假设你在使用GCC。标准的解决方案是使用gprof进行分析。

在分析之前,请确保将-pg添加到编译中:

cc -o myprog myprog.c utils.c -g -pg

我还没有尝试过,但我听到了关于谷歌perftools的好消息。这绝对值得一试。

这里有相关问题。

如果gprof不适合您,还有一些流行语:Valgrind、Intel VTune、Sun DTrace。

在工作中,我们有一个非常好的工具,它可以帮助我们监控我们想要的日程安排。这已多次有用。

它是用C++编写的,必须根据您的需要进行定制。不幸的是,我不能共享代码,只有概念。您使用一个包含时间戳和事件ID的“大”易失性缓冲区,可以在死后或停止日志系统后转储(例如,将其转储到文件中)。

您检索包含所有数据的所谓大缓冲区,一个小接口解析它并显示带有名称(up/down+value)的事件,就像示波器使用颜色(在.hpp文件中配置)所做的那样。

您可以自定义生成的事件数量,以仅关注您所需的内容。它帮助我们解决了调度问题,同时根据每秒记录的事件数量消耗了所需的CPU数量。

您需要3个文件:

toolname.hpp // interface
toolname.cpp // code
tool_events_id.hpp // Events ID

其概念是在tool_events_id.hpp中定义如下事件:

// EVENT_NAME                         ID      BEGIN_END BG_COLOR NAME
#define SOCK_PDU_RECV_D               0x0301  //@D00301 BGEEAAAA # TX_PDU_Recv
#define SOCK_PDU_RECV_F               0x0302  //@F00301 BGEEAAAA # TX_PDU_Recv

您还可以在toolname.hpp中定义一些函数:

#define LOG_LEVEL_ERROR 0
#define LOG_LEVEL_WARN 1
// ...

void init(void);
void probe(id,payload);
// etc

代码中可以使用的任何位置:

toolname<LOG_LEVEL>::log(EVENT_NAME,VALUE);

probe函数使用几条装配线尽快检索时钟时间戳,然后在缓冲区中设置一个条目。我们还有一个原子增量来安全地找到存储日志事件的索引。当然,缓冲区是圆形的。

希望这个想法不会因为缺少示例代码而混淆。

您可以使用loguru这样的日志框架,因为它包括时间戳和总运行时间,可以很好地用于分析:

较新的内核(例如最新的Ubuntu内核)附带了新的“perf”工具(apt-get-install-linux-tools)AKA perf_events。

这些都配有经典的采样分析器(手册页)以及很棒的时间图表!

重要的是,这些工具可以是系统评测,而不仅仅是进程评测-它们可以显示线程、进程和内核之间的交互,并让您了解进程之间的调度和I/O依赖关系。

事实上,没有多少人提到google/基准测试,这有点让人惊讶,虽然固定代码的特定区域有点麻烦,特别是如果代码库有点大的话,但是我发现这在与callgrind结合使用时非常有用

IMHO识别导致瓶颈的工件是这里的关键。不过,我会先尝试回答以下问题,然后根据这些问题选择工具

我的算法正确吗?有锁被证明是瓶颈吗?是否有一段特定的代码被证明是罪魁祸首?IO如何处理和优化?

valgrind与callgrind和kcachegrind的结合应该能对以上几点提供一个不错的估计,一旦确定某段代码存在问题,我建议做一个微基准测试——谷歌基准测试是一个很好的开始。